

VLSI Design Lecture 8 Dynamic Logic

By Prof. Sanjay Vidhyadharan

ELECTRICAL

Static CMOS Logic

- ➤ Area Large
- **➤**Static Dissipation
- ➤ Dynamic Dissipation
 Short Circuit
 Switching Loss

Static Full Adder

A	В	Carry In	Sum	Carry out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Carry(CY) = AB + BC + AC

$$Sum(S) = \bar{A}\bar{B}C \quad + A\bar{B}\bar{C} + \bar{A}B\bar{C} + ABC$$

$$CY = AB + C(A + B)$$

 $S = \overline{CY}(A + B + C) + ABC$ Simplified Expressions

CMOS 28T Mirror Adder

$$Carry = AB + BC + CA = AB + C(A + B)$$

 $Pull - Down \ Network \ for \ Carry \ Bar = AB + C(A + B)$

$$Pull-UP$$
 Network for Carry $Bar = A'B' + B'C' + C'A'$
= $A'B' + C'(A' + B')$

10/1/2025 4

CMOS 28T Mirror Adder

Static vs. Dynamic

In static circuits at every point in time (except when switching) the output is connected to either GND or VDD via a low resistance path.

fan-in of n requires 2n (n N-type + n P-type) devices

Dynamic circuits rely on the temporary storage of signal values on the capacitance of high impedance nodes.

requires on n + 2 (n+1 N-type + 1 P-type) transistors

Dynamic Gate

Two phase operation

$$OUT = \overline{CLK} + \overline{(A \cdot B + C)} \cdot CLK$$

DG needs periodic sequence of pre-charges and evaluations

Properties of Dynamic Gate

- ➤ Once the output of a dynamic gate is discharged, it cannot be charged again until the next pre-charge operation.
- ➤ Inputs to the gate can make at most one transition during evaluation.
- ➤ Output can be in the high impedance state during and after evaluation (PDN off), state is stored on CL

Properties of Dynamic Gate

- ➤ Logic function is implemented by the PDN only number of transistors is N + 2 (versus 2N for static complementary CMOS)
- \gt Full swing outputs ($V_{OL} = GND$ and $V_{OH} = V_{DD}$)
- > Non-ratioed sizing of the devices does not affect the logic levels
- > Faster switching speeds

Reduced load capacitance due to lower input capacitance Reduced load capacitance due to smaller output loading Reduced logical effort

No I_{sc} so all the current provided by PDN goes into discharging C_L

Properties of Dynamic Gate

> Overall power dissipation usually higher than static CMOS (for low input switching activity)

No static current path ever exists between V_{DD} and GND (including Psc)

Higher transition probabilities

Extra load on Clk

> PDN starts to work as soon as the input signals exceed V_{Tn} , so V_{M} , V_{IH} and V_{IL} equal to V_{Tn}

Low noise margin (N_{ML})

Needs a pre-charge / evaluate clock

Speed of Dynamic Logic

Main advantages are increased speed and reduced implementation area

For low input signal no additional switching occurs $t_{pLH} = 0$!

Pre-charge time should coincide with other system function "Dead Zone"

o For Microprocessor instruction decode

Transition Activity

- \square Switching activity, $P_{0\rightarrow 1}$, has two components
 - A static component function of the logic topology
 - A dynamic component function of the timing behavior (glitching)

2-input NOR Gate

Α	В	Out
0	0	1
0	1	0
1	0	0
1	1.	0

Static transition probability

$$P_{0\rightarrow 1} = P_{\text{out}=0} \times P_{\text{out}=1}$$
$$= P_0 \times (1-P_0)$$

With input signal probabilities

$$P_{A=1} = 1/2$$

 $P_{B=1} = 1/2$

NOR static transition probability = $3/4 \times 1/4 = 3/16$

Transition Activity

- Switching activity is a strong function of the input signal statistics
 - P_A and P_B are the probabilities that inputs A and B are one

$$P_{0\to 1} = P_0 \times P_1 = (1-(1-P_A)(1-P_B)) (1-P_A)(1-P_B)$$

Transition Activity

	$P_{0\to 1} = P_{out=0} \times P_{out=1}$
NOR	$(1 - (1 - P_A)(1 - P_B)) \times (1 - P_A)(1 - P_B)$
OR	$(1 - P_A)(1 - P_B) \times (1 - (1 - P_A)(1 - P_B))$
NAND	$P_A P_B x (1 - P_A P_B)$
AND	$(1 - P_A P_B) \times P_A P_B$
XOR	$(1 - (P_A + P_B - 2P_A P_B)) \times (P_A + P_B - 2P_A P_B)$

For X:
$$P_{0\to 1} = P_0 \times P_1 = (1-P_A) P_A$$

= 0.5 x 0.5 = 0.25

For Z:
$$P_{0\to 1} = P_0 \times P_1 = (1-P_XP_B) P_XP_B$$

= $(1 - (0.5 \times 0.5)) \times (0.5 \times 0.5) = 3/16$

> Dynamic Logic Suffers from Charge Sharing Phenomenon

$$\frac{\text{Case1.} \Delta V_{\text{out}} > -V_{\text{Tn}}}{|\Delta V_{\text{out}}| < V_{\text{Tn}}}$$

$$V_{DD}$$
. $C_Y = V_Y C_Y + (V_{DD} - V_{Tn})C_X$

$$\Delta V_{\text{out}} = -\frac{(V_{\text{DD}} - V_{\text{Tn}})C_{X}}{C_{Y}}$$

$$C_X \ll C_Y$$

$$V = Q/C$$

> Dynamic Logic Suffers from Charge Sharing Phenomenon

Case2.
$$\Delta V_{out} < -V_{Tn}$$

$$V_{DD}.C_{Y} = V_{Y} C_{Y} + V_{X} C_{X}$$

$$V_{DD}.C_{Y} = V_{Y} C_{Y} + V_{Y} C_{X}$$

$$V_{DD}.C_{Y} = (V_{DD} + \Delta V_{out}) (C_{Y} + C_{X})$$

$$\Delta V_{out} = -\frac{V_{DD}C_X}{C_{Y+}C_X}$$

Solution to Charge Redistribution

Pre-charge internal nodes using a clock-driven transistor (at the cost of increased area and power)

Capacitive Coupling

The high impedance of the output node makes the circuit very sensitive to crosstalk effects. A wire routed over a dynamic node may couple capacitively and destroy the state of the floating node.

Backgate (or output-to-input) coupling

Contention

[7] M.E.S Elraba, M.H Anis, M.I Elmasry, "A contention-free domino logic for scaled down CMOS technologies with ultra low threshold voltages," *Proc. of IEEE International Symposium on Circuits and Systems* pp. 748 - 751, May 2000.

Clock-Feedthrough

• Dynamic gates require *monotonically rising* inputs

during evaluation

$$-0 -> 0$$

$$-0 -> 1$$

$$-1 -> 1$$

- But not 1 -> 0

> Cascading Dynamic Gates

Thank you

10/1/2025