
Microprocessors and Interfaces:

Lecture 13

8086 Arithmetic Instructions : Part-2

By Dr. Sanjay Vidhyadharan

Reference : UNDERGRADUATE TEXTS IN COMPUTER SCIENCE

Springer Science+Business Media, LLC

Editors

David Gries

Fred B. Schneider

2

1/21/2024

Arithmetic Instructions

➢ Addition

➢ Subtraction

➢ Increment

➢ Decrement

➢ Comparison

➢Multiplication

➢Division

➢Decimal Adjust

Multiplication
• Unsigned Multiplication (mul)

• Signed Multiplication (imul)

8 Bit X 8 bit – Product will be 16-bit

• MUL Source (Product in AX)

• MUL 10 (invalid)

• MUL Byte PTR [BX] (Product in AX)

The 16-bit result is placed in the AX register

Multiplication

If the source operand is a word, it is multiplied by the contents of the AX register and the

doubleword result is placed in the DX and AX register pair, with the AX register holding the

lower-order 16 bits, as shown below

If the source operand is a double word, it is multiplied by the contents of the EAX register

and the 64-bit result is placed in the EDX and EAX register pair, with the EAX register

holding the lower-order 32 bits, as shown below.

Multiplication

Flags : The mul instruction affects all six status flags. However, it updates only the

carry and overflow flags. The remaining four flags are undefined. Setting of the

carry and overflow flags does not indicate an error condition. Instead, this condition implies

that AH, DX, or EDX contains significant digits of the result.

Example 1:

mov AL, 10

mov DL, 25

mul DL Carry and overflow not set (8-bit result, AH will have 00000000)

Example 2:

mov AL, 10

mov DL, 26

mul DL Carry and overflow set (16-bit result)

1/21/2024 6

Multiplication

Example 3

Multiply two 8-bit numbers, where numbers are stored from offset 100 and store

the result into offset 200.

MOV SI, 100

MOV DI, 200

MOV AL, [SI]

INC SI

MUL BYTE PTR [SI]

MOV [DI], AX

1/21/2024 7

Multiplication
Signed Multiplication :

imul source

The carry and overflow flags are set if the upper half of the result is not the sign extension

of the lower half

Example 1:

mov DL, 0FFH; DL = -1

mov AL, 42H; AL = 66

imul DL ; AH-AL: 1111111-10111110

 Carry and overflow will be reset (8-bit result, AH is sign extended)

Example 2:

mov DL, 0FFH; DL = -1

mov AL, 0BEH; AL = -66

imul DL ; AH-AL: 00000000-01000010

 Carry and overflow will be reset (8-bit result, AH is sign extended)

Example 3:

mov DL, 25H; DL = 25

mov AL, 0F6; AL = -10

imul DL ; AH-AL: 11111111-00000110

 Carry and overflow will be Set (16-bit result, AH is not sign extended)

Division
div source (unsigned)

idiv source (signed)

Division generates two result components-quotient and remainder.

In multiplication, by using double-length registers, no overflow occurs. In division, divide

overflow is a real possibility and Pentium generates a special software interrupt when a divide

overflow occurs.

If the source operand is a byte, the dividend is assumed to be in the AX register and 16 bits long.

After division, the quotient is returned in the AL register and the remainder in the AH register,

as shown below.

Example 251/12

mov AX, 00FBH (251 D)

mov CL, 0CH (12D)

div CL

AL := 14H (20D) Quotient

AH := 0BH (11D) Remainder

All six status flags are affected and are undefined.

Division
div source (unsigned)

idiv source (signed)

If the source operand is a word, the dividend is assumed 32 bits long and in the DX and AX

registers (upper 16 bits in DX). After the division, the 16-bit quotient will be in AX and the 16-

bit remainder in DX, as shown below.

Example 5147/300

mov DX, 0

mov AX, 141BH (5147D)

mov CX, 012CH (300D)

div CX

AX := 0012H (17D) Quotient

DX := 002FH (47D) Reminder
If source operand is a double word

1/21/2024 10

Binary Coded Decimal

General digital systems

User enters decimal → BCD i/p→ Binary i/p → compute in binary

→ Binary o/p → BCD o/p → Decimal output shown to user

1/21/2024 11

11

BCD addition

4 + 5 0 1 0 0

0 1 0 1

1 0 0 1

4

5

9 Expected Result

4 + 8 0 1 0 0

1 0 0 0

4

8

1 1 0 0 Is this expected Result ?

Expected answer

 in BCD :12
0001 : 0010

Binary Coded Decimal

1/21/2024 12

Binary Coded Decimal

BCD addition

9 + 9 1 0 0 1

1 0 0 1

9

9

1 0 0 1 0 Expected result ?

0 0 0 1- 1 0 0 0

0 1 1 0

1 8

Add correction of +6

Carry out generated

DAA

DAA follows the ADD or ADC instruction to adjust the result into a
BCD result.

Example

MOV AL,01H

ADD AL,09H AX=0 AL=A (1010)

DAA AX=1 AL=0 (1010+0110)

AF,CF,PF and ZF are affected. OF is undefined after DAA
instruction.

DAS follows the SUB or SBB instruction to adjust the result into a
BCD result.

1/21/2024 14

ASCII Arithmetic

ASCII Arithmetic

• Four instructions in ASCII arithmetic operations:

– AAA (ASCII adjust after addition)

– AAD (ASCII adjust before division)

– AAM (ASCII adjust after multiplication)

– AAS (ASCII adjust after subtraction)

AAA Instruction

• Addition of two one-digit ASCII-coded numbers will not result in

any useful data.

• Ex: Before: AL= 0011 0001 , ASCII 1;

BL= 0011 1001,ASCII 9

ADD AL,BL ; Result : AL=0110 1110 = 6AH,

; which is incorrect ASCII

AAA ; AH 0001 AL 0001

ADD AX, 3030

✓ The AAA instruction works only on the AL register.

✓ The AAA instruction updates AF and CF but OF,PF,SF and

ZF are left undefined.

• AAS adjusts the AX register after an ASCII subtraction.

AAM (BCD Adjust after multiply)

• Follows multiplication instruction after multiplying two one-digit

unpacked BCD numbers.

• AAM converts from binary to unpacked BCD.

• Ex: AL= 00000101 =unpacked BCD 5

BH=00001001 = unpacked BCD 9

MUL BH ; AL X BH, result in AX

; AX =00000000 00101101 =002DH

AAM ; AX=0000 0100 00000101= 0405H

; which is unpacked BCD for 45.

AAD (BCD to Binary convert before Division)

• Appears before a division.

• The AAD instruction requires the AX register contain a two-digit

unpacked BCD number (not ASCII) before executing.

• Ex: AX= 0607H unpacked BCD for 67 decimal

 CH=09 H , now adjust to binary

 AAD ; result: AX=0043=43H= 67 decimal

 DIV CH ; Divide AX by unpacked BCD in CH

 ; quotient : AL=07 unpacked BCD

 ; Remainder : AH=04 unpacked BCD

 ; Flags undefined after DIV

AAS Instruction

• AAS adjusts the AX register after an ASCII subtraction.

• Ex1: AL=00111001 =39H =ASCII 9

 BL= 00110101 =35H= ASCII 5

 SUB AL,BL ;Result: AL= 00000100= BCD 04

 and CF=0

 AAS ; result: AL=00000100 = BCD 04

 and CF=0, no borrow required.

 ASCII 5 - ASCII 9(5-9)

1/21/2024 20

Thankyou

	Slide 1: Microprocessors and Interfaces: Lecture 13 8086 Arithmetic Instructions : Part-2 By Dr. Sanjay Vidhyadharan Reference : UNDERGRADUATE TEXTS IN COMPUTER SCIENCE Springer Science+Business Media, LLC Editors David Gries Fred B. Schneider
	Slide 2: Arithmetic Instructions
	Slide 3
	Slide 4: Multiplication
	Slide 5: Multiplication
	Slide 6: Multiplication
	Slide 7: Multiplication
	Slide 8: Division
	Slide 9: Division
	Slide 10
	Slide 11
	Slide 12
	Slide 13: DAA
	Slide 14: ASCII Arithmetic
	Slide 15: ASCII Arithmetic
	Slide 16: AAA Instruction
	Slide 17: AAM (BCD Adjust after multiply)
	Slide 18
	Slide 19
	Slide 20

