Microprocessors and Interfaces
| ecture.8
8086 Instructions'Set : Part-2
Data Transfer Instructions

By Dr..Sanjay Vidhyadharan

Data Transfer Instructions

General Purpose Data Transfer
(MOV, XCHG, XLAT, PUSH, POP)
Input / Output Data Transfer
(IN, OUT)
Address Object Data Transfer
(LEA, LDS, LES)
Flag Transfer Data Transfer
(LAHF, SAHF, PUSHF, POPF)

Segment Override

The Segment Override Prefix says that if we want to use some other
segment register than the default segment for a particular code, then it is
possible.

E.g. MOV AX, SS : [BX]

Here, in this case, the Stack segment register is used as a prefix for the
offset BX. So, instead of DS, which is the default segment register for BX,
the SS will be used for finding the effective address location.

Effective address = SS X 10H + content of BX register

' Zeros

ints to a memory
ation within a
jment

Offset Value (16 bits)

" Segment Register (16 bits) NN

£

Upper 16bit of starting
address of asegment

Actual address for
memory

%

Ny

Physical Address (20 Bits)

Segment Override

Write the machine language equivalent code : MOV DS: 2345 [BP], DX

Solution:

Here we have to specify DX using REG field. The D bit must be O; indicating that DX is the
source register. The REG field must be 010 to indicate DX _register. The w bit must be 1 to
indicate word operation. 2345 [BP] is specified with MOD=10 and R/M = 110 and displacement
= 2345 H. Whenever BP is used to generate the Effective Address (EA), the default segment
would be SS. In this example, we want the segment register to be DS, we have to provide the
segment override prefix byte (SOP byte) to start with.~xThe SOP byte is 001 SR 110, where SR
value is provided as per table shown below.

To specify. DS register, the SOP byte would be 001 11
110.=3E"H. Thus the 5 byte code for this instruction
w0 Es Would be 3E 89 96 45 23 H.

SR Segment register

01 CS SOP |Opcode| D | W | MOD |REG| R/M | LB disp. | HD disp.
10 S8 C3EH | 100010 0 1 10 | 010 110 43 23
11 Ds

Suppose we want to code MOV SS: 2345 (BP), DX. This
generates only a 4 byte code, without SOP byte as SS is

- already the default segment register in this case.
MOV = Move 76543210 76543210
Register/Memory to/from Register 100010 dw mod reg r/m
— 0: Data flow from the REG field to the RIM 010 oL | DX |

Mod 10 memory mode with 16 bit displacement [nmo | b6 | @peDs [@®P+DI6 [DH | S |

Input / Output

* IN : Input byte or word
« OUT : Output byte or word

N

O

C AO0-A19 DO0-D15

O

O

O

0 >

O

O

o soss

O CPU .

O

MR Buffer

C Decoder| DE

O - WR 3:8 =MW 74245

C 0 wio | 74138 2IOR

O —— __ _ plow o

O m 4 <

O u| » < Chip -

O +—— Select CS1 <

C 0 BHE | ‘8233

- 0 5’ Bus Cntr[€52 > RAM S RAM
MR— 512 KB MR—> 512KB
Mw—s| 62256 Mw—s 62256

T

Cs1 cs2

IN and OUT

* IN & OUT Iinstructions perform 1/O operations.

« Contents of AL, AX, or EAX are transferred only between 1/0O
device and microprocessor.
— an IN instruction transfers data from an external 1/O device into

AL, AX, or EAX
— an OUT transfers data from AL, AX, or EAX to an external 1/0O

device
* Only the 80386 and above contain EAX

IN

* [N transfers a byte or word from an input.port to the AL
register or AX register.

* IN instruction has two formats:

— Fixed port: port number is . specified directly in the
Instruction (port no: 0-255).

— Variable port: port number. is loaded into the DX register
before IN instruction.(port no : 0 — 65535).

IN acc, port no#
IN acc, DX

Machine code formats

OuUT

« OUT transfers a byte or a word from AL register or AX register
respectively, to an output port.

 OUT Iinstruction has two formats:

— Fixed port: port number is. specified directly In the
Instruction (port no: 0-255).

— Variable port: port number iIs loaded into the DX register
before OUT instruction (port no : 0 — 65535).

OUT port no# , ace
OUT DX, acc 1110111w

Machine code formats

N AL, 19 H
NAX, 19 H

N AL, DX

N AX, DX
OUT 19H, AL
OUT 19H AX
OUT DX, AL
OUT DX, AX

IN/OUT

Isolated versus Memory-Mapped 1/0

*In the Isolated scheme, IN, OUT, and IO/M- are required.
In the Memory-mapped scheme, any instruction that
references memory can be used.

Memory Disadvantage:
FFFFF A portion of the memory space

1s used for I'O devices.

Advantage:
-a— Overlapped IORC and IOWC not required.

Sp aces Any data transfer nstruction.

Disadvantage:
IMXS8 :
Separate spaces Hardware using M/JIO and

P W/R needed to develop

I/ O signals JORC and IOWC.

Requires IN, OUT, INS and
OUTS

00000

Address Object data transfer

LEA : Load effective address
LDS : Load pointer using DS
LES : Load pointer using ES
LFS : Load pointer using FS
LGS : Load pointer using. GS
LSS : Load pointer using.SS

Example
LEA BX, [1234H] MOV BX, [1234H]

 Zeros
ints to a memory Z Offset Value (16 Dits)
ation within a i
jment
Ay WA Y,
Segment Register (16 bits) LMD/
/

Upper 16bit of starting
address of a segment

Actual address for
memory

X

<

Physical Address (20 Bits)

LEA AX, [BP+SI+5] ; Compute address of value
MOV AX, [BP+SI+5] ; Load value at that address

LEA(Load Effective Address)

LEA transfers the offset of the source operand to a destination
operand.

The source operand must be a memory operand.

The destination operand must be a 16-bit general purpose
register.

Does not effects flags.

LEA reg; mem

Machine code format

DS (load pointer using DS)

LDS transfers 32-bit pointer variable from source operand
to destination operand and DS register.

The source operand must be a memory operand.

The destination operand may be any 16-bit general
purpose register.

The first word of the pointer variable Is transferred into
16-bit general purpose register.

The second waord of the pointer variable transferred into
DS.

DS (load pointer using DS)

LDS BX, 5000H/LES BX, 5000H

15 8 7 0 F] 0
I Yy ‘ XX ‘4 XX
A
YY
nn mmJ< mm
A nn

5000
5001
5002

5003

Accessing array In data segment

1000:0000 =
A DW 0000, 1000 1000:0001 =
1000:0002 =
1000:0003 =
1000:0004 =
MOV SI. WORD PTRA x,\S"

MOV AX, WORD PTR A+2.-
MOV DS, AX 5/

LDS SI,A -

LES (load pointer using ES)

LES transfers 32-bit pointer variable from-source operand
to destination operand and ES.

The source operand must be a memory operand.

The destination operand may: be any 16-bit general
purpose register.

The first word of the pointer variable iIs transferred into
16-bit general purpose register.

The second word of the pointer variable transferred into
ES.

MOV
MOV
MOV

LES

Accessing array In extra segment

DW 0000, 2000

DI, WORD PTR B
AX,WORD PTR B + 2
ES,AX

DI, B

2000:0000= B[0]

2000:0001 = B[1]
2000:0002 = BJ[2]
2000:0003 = B[3]
2000:0004 = B[4]

03
02
01
00

Flag Register Data transfer

LAHF : Load AH register from flags
SAHF : Store AH register in flags
PUSHF : Push flags onto stack
POPF : Pops flags off stack

LAHF

LAHF instruction transfers the rightmost 8 bits of the flag
register into the AH register.

Copies SF, ZF, AF, PF and CF into-bits 7 ,6 ,4 ,2 and O,
respectively of AH.

Contents of 5,3 ,1 are undefined.

Can be used to observe the status of all conditional flags
except the overflow flag:.

HEENEEEEEERERERE

Flag Register

LAHF

Machine code format

Control Flags

Control Flags — The control flags enable or disable certain operations of the microprocessor.
There are 3 control flags in 8086 microprocessor and these are:

1.Directional Flag (D) — This flag is specifically used in string instructions.

If directional flag is set (1), then access the string data from higher memory location towards
lower memory location. (STD/CLD)

If directional flag is reset (0), then access the string data from lower memory location towards
higher memory location.

2.Interrupt Flag (1) — This flag is for interrupts.

If interrupt flag is set (1), the microprocessor will recognize interrupt requests from the
peripherals. (STI)

If interrupt flag is reset (0), the microprocessor will not recognize any interrupt requests and
will ignore them.

3.Trap Flag (T) — This flag is used for on-chip debugging. Setting trap flag puts the
microprocessor into single step made for debugging. In single stepping, the microprocessor
executes a instruction and enters into single step ISR. (POP)

If trap flag is set (1), the CPU automatically generates an internal interrupt after each
instruction, allowing a program to be inspected as it executes instruction by instruction.

If trap flag is reset (0), no function is performed.

SAHF

SAHF instruction transfers the AH register mto the rightmost
8 bits of the flag register.

Transfers bits 7 ,6 ,4 ,2 and O of AH register to SF, ZF, AF,
PF and CF of FLAG register respectively.

OF, DF, IF and TF are not affected.

HERREAREEERERERE

Flag Register

SAHF

Machine code format

Additional Data Transfer Instructions
(X386 onwards)

= MOVSX DST, SRC
Ex: MOVSX CX, BL

= MOVZX DST, SRC
Ex: MOVZX CX, BL

= BSWAP REG 32
Ex: BSWAP EAX

Additional Data Transfer Instructions
(X386 onwards)

= MOVSX DST, SRC

Ex: MOVSX CX, BL
= SX- Sign extension
= Destination size > Source size

Example: MOVSX CX, BL
Assume BL= 80H

After execution of MOVSX instruction
BL=80H

CX= CHCL

CL=80H = 1000 0000

CH= 1111 1111=FFH

Thus CX= FF80H

Additional Data Transfer Instructions
(X386 onwards)

= MOVZX DST, SRC

Ex: MOVZX CX, BL
m ZX-— Zero extension
= Destination size > Source size

Example: MOVZX CX, BL
Assume BL= 80H

After execution of MOVZX instruction
BL=80H

CX= CHCL

CL=80H = 1000 0000

CH= 0000 00000=00H

Thus CX= 0080H

Additional Data Transfer Instructions
(X386 onwards)

= BSWAP REG 32
Ex: BSWAP ECX
= CONVERT LITTLE ENDIAN FORMAT TO BIG ENDIAN FORMAT

= Only 32 bit registers

Example: BSWAP ECX

Assume ECX= 24 56 89 AOH

After execution of BSWAP ECX Instruction
ECX= A0 89 56 24H

	Slide 1: Microprocessors and Interfaces Lecture 8 8086 Instructions Set : Part-2 Data Transfer Instructions By Dr. Sanjay Vidhyadharan
	Slide 2
	Slide 3: Segment Override
	Slide 4: Segment Override
	Slide 5: Input / Output
	Slide 6: IN and OUT
	Slide 7: IN
	Slide 8: OUT
	Slide 9: IN/OUT
	Slide 10: Isolated versus Memory-Mapped I/O
	Slide 11: Address Object data transfer
	Slide 12: Example
	Slide 13: LEA(Load Effective Address)
	Slide 14: LDS (load pointer using DS)
	Slide 15
	Slide 16: Accessing array in data segment
	Slide 17: LES (load pointer using ES)
	Slide 18: Accessing array in extra segment
	Slide 19: Flag Register Data transfer
	Slide 20: LAHF
	Slide 21
	Slide 22: SAHF
	Slide 23: Additional Data Transfer Instructions (X386 onwards)
	Slide 24: Additional Data Transfer Instructions (X386 onwards)
	Slide 25: Additional Data Transfer Instructions (X386 onwards)
	Slide 26: Additional Data Transfer Instructions (X386 onwards)
	Slide 27: Thank you

