Testability of VLSI

Lecture 07: Automatic Test Pattern Generation for Combinational Circuits

By Dr. Sanjay Vidhyadharan

COMMUNICATION

INSTRUMENTATION

ELECTRONICS

ELECTRICAL

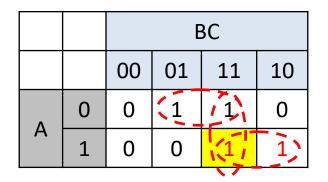
ATPG Algorithm

Roth's **D-Algorithm** (D-ALG), established the calculus and algorithms for ATPG using D-cubes.

The next development was Goel's **PODEM** algorithm. He efficiently used path propagation constraints to limit the ATPG algorithm search space, and introduced the notion of *backtrace*.

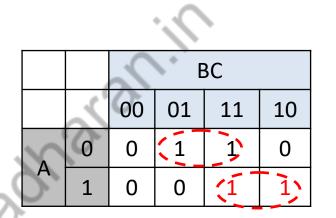
The third significant development was Fujiwara and Shimono's **FAN** algorithm. They efficiently constrained the backtrace to speed up search, and took advantage of signal information to limit the search space.

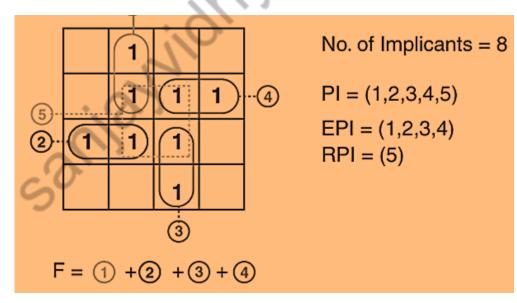
COMMUNICATION


9/3/2023

ELECTRICAL

ELECTRONICS

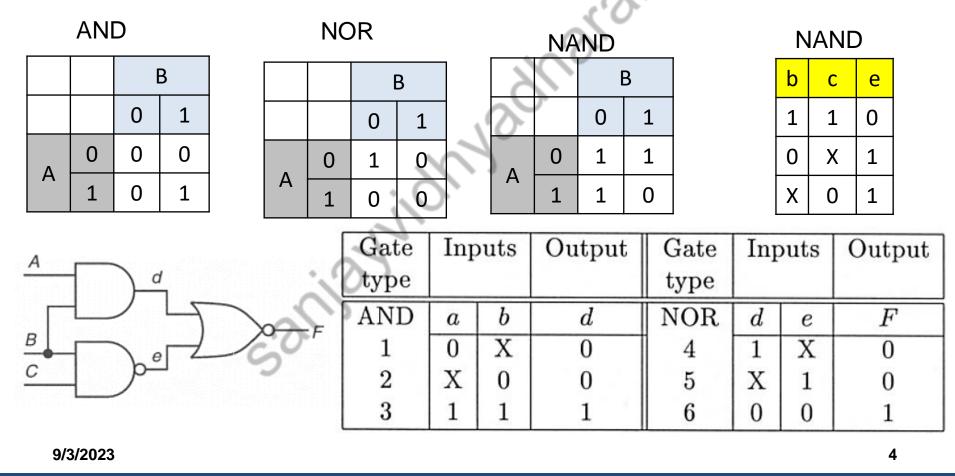

Prime Implicants



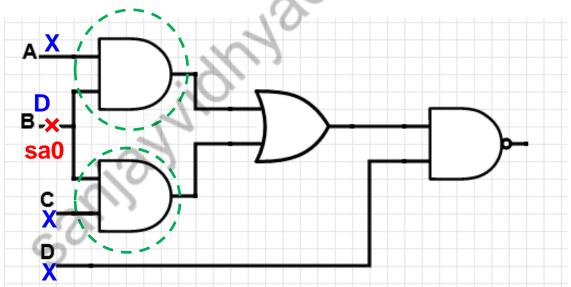
Prime Implicants = AB + BC + A'C.

ELECTRONICS

Essential Prime Implicants = AB + A'C.


COMMUNICATION

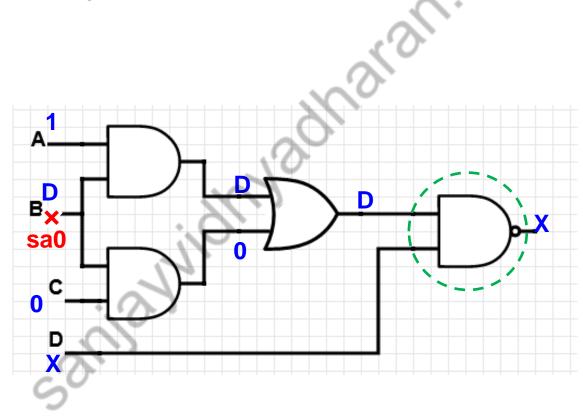
9/3/2023


ELECTRICAL

INSTRUMENTATION

Definition 1. The *singular cover* of a logic gate is the minimal set of input signal assignments needed to represent *essential prime implicants* in the Karnaugh map of that logic gate, for both output cases of 0 and 1.

Definition 2. The *D-frontier* consists of all gates whose output value is currently x but have one or more error signals (either D's or D's) on their inputs. Error propagation consists of selecting one gate from the D-frontier and assigning values to the unspecified gate inputs so that the gate output becomes D or D. This procedure is also referred to as the D-drive operation. If the D-frontier becomes empty during the execution of the algorithm, then no error can be propagated to a PO. Thus an empty D-frontier shows that backtracking should occur.

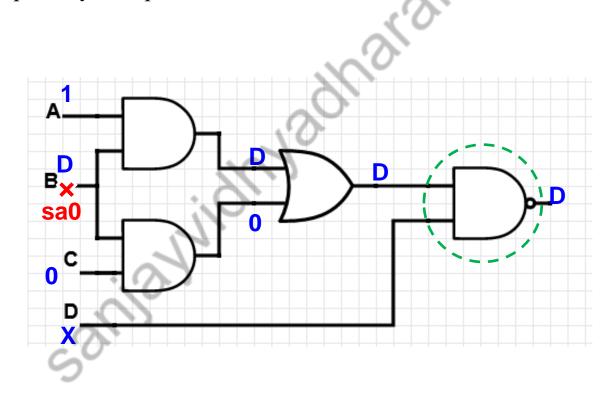

COMMUNICATION

9/3/2023

ELECTRICAL

ELECTRONICS

Definition 3. The *Unique D-frontier*. There is only one gate in the D-frontier and the fault needs to be propagated through it.

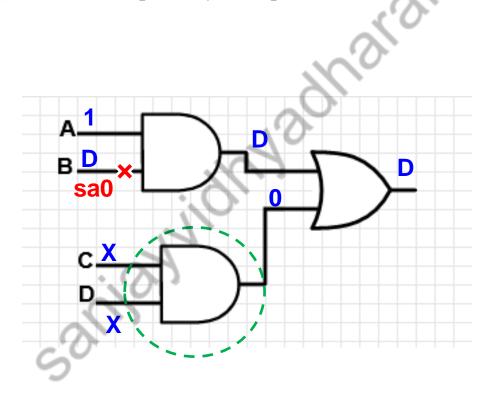

COMMUNICATION

9/3/2023

ELECTRICAL

ELECTRONICS

Definition 4. The *J-frontier*. To keep track of the currently unsolved line-justification problems, we use a set called the J-frontier, which consists of all gates whose output value is known but is not implied by its input values.


COMMUNICATION

9/3/2023

ELECTRICAL

ELECTRONICS

Definition 4. The *J-frontier*. To keep track of the currently unsolved line-justification problems, we use a set called the J-frontier, which consists of all gates whose output value is known (requirement) but is not implied by its input values.

COMMUNICATION

9/3/2023

ELECTRICAL

ELECTRONICS

COMMUNICATION

Definition 5. A *Propagation D-cube* is a collapsed truth table entry that can be used to characterize an arbitrary logic block.

AND gate propagation D-cube D,1,D or D', 1, D' or D,D,D or D',D',D'

OR gate *propagation* D-cube D,0,D or D',0, D' or D,D,D, or D',D',D'

NOR gate *propagation* D-cube D,0,D' or D',0, D

NAND gate *propagation* D-cube D,1,D' or D',1, D

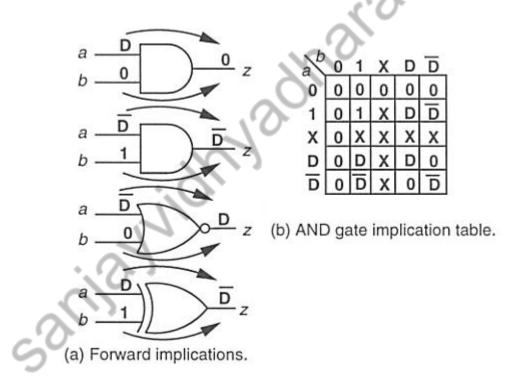
ELECTRONICS

ELECTRICAL

COMMUNICATION

Definition 6. *Primitive D-cubes of failure (PDCF)* model faults in a logic circuit, and can model any (1) stuck-at-0 fault, (2) stuck-at-1 fault, (3) bridging fault (short circuit), or (4) arbitrary change in logic gate function (e.g., from AND to OR.)

AND Sa0 PCDF 11D

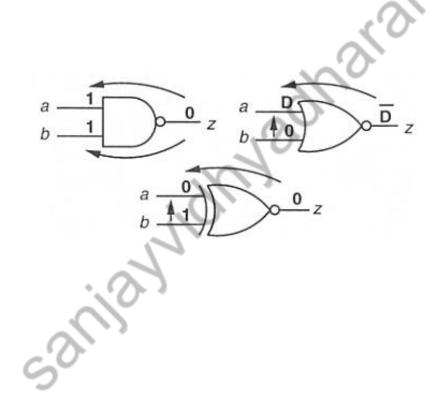

OR Sa0 PCDF? X1D or 1XD

ELECTRONICS

OR Sa1 PCDF ? 00D'

ELECTRICAL

Definition 7. *Forward implication* results when the inputs to a logic gate are significantly labeled so that the output can be uniquely determined. Gate is removed from *D-frontier List*



COMMUNICATION

ELECTRICAL

ELECTRONICS

Definition 8. *Backward implication* is the unique determination of all inputs of a gate for given output and possibly some of the inputs.. Gate is removed from *J-frontier List*

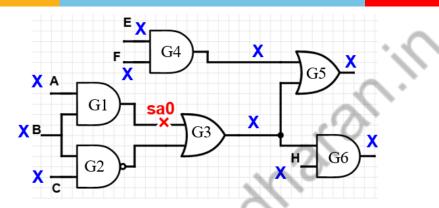
COMMUNICATION

9/3/2023

ELECTRICAL

ELECTRONICS

Procedure.


- 1. Pick a fault from the Fault table for a node
- 2. Select e PDCF for the fault.
- 3. D-Drive : Propagate the fault choosing from the D-frontier gates (Forward implication)
- 4. Back Propagate to get consistent inputs. If inconsistently encountered back track and chose alternate path.

COMMUNICATION

ELECTRONICS

9/3/2023

ELECTRICAL

											-		-
Step	A	В	C	E	F	н	G1	G2	G3	G4	G5	G6	
1. Choose a fault. Sa0 at G1.	1	1	X	X	X	X	8	x	X	X	X	X	PCDF G1 DF{G3}
2. Forward Implication	1	1	X	X	X	x	D	0	D	x	x	x	JF{G2} DF{G5. G6}
3. Forward Implication Choose G5	1	1	×	×	x	X	D	0	D	0	D	X	JF{G2, G4}
4. Backward Implication	1	10	x	0	X	X	D	0	D	0	D	x	JF{G2}
5.Backward	1	1	1	0	Х	Х	D	0	D	0	D	Х	Done 14
Choose G5 4. Backward Implication		4	x 1										

ELECTRICAL

ELECTRONICS

COMMUNICATION

INSTRUMENTATION

			-	1 <u>A</u> B[1	E GI G2		G4 sa0 ×) G3>	D	G K K	8	×	
Step	A	В	C	E	F	н	G1	G2	G3	G4	G5	G6	
1. Choose a fault. Sa0 at G1.	1	1	X	X	Х	x	5	x	X	X	X	X	PCDF G1 DF{G3}
2. Forward Implication	1	1	X	X	X	x	D	0	D	X	X	x	JF{G2} DF{G5. G6}
3. Forward Implication Choose G5	1	1	×	X	x	X	D	0	D	1	D	X	JF{G2, G4}
4. Backward Implication	1	10	x	0	X	X	D	0	D	0	D	х	JF{G2}
5.Backward 9/3/2023	1	1	1	0	Х	Х	D	0	D	1	D	Х	Done 15

ELECTRICAL

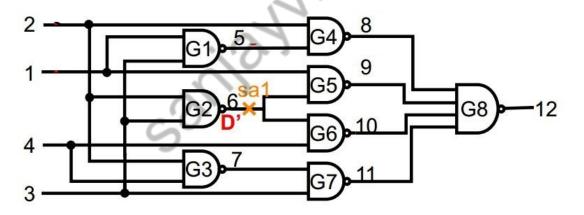
ELECTRONICS

COMMUNICATION

2 - 64 = 64 = 64 = 64 = 63 = 12 $4 - 63 = 63 = 7 = 67 = 11$													
Step	1	2	3	4	5	6	7	8	9	10	11	12	
1. Choose a fault. Sa0 at G2.	X	1	1	X	X	0,	Х	Х	Х	Х	Х	x	PCDF G2 DF{G5,G6}
2. Choose G5. Forward Implication	1	1	1	X	x	D'	Х	х	D	Х	x	x	DF{G8}
3. Forward Implication.	1		1	x	X	D'	Х	1	D	1	1	D'	JF{G4, G6,G7}
4.Backward Implication	1	5	1	0	0	D'	0	1	D	1	1	D'	JF{G1, G3}
5.Backward Im pligatio n	1	1	1	0 1	0	D'	0	1	D	D	1	X	Contention for G7 16
ELECTRICAL E	LEC	ſRO	NIC	'S		CON	IW	INIC	AT	ON		INS	RUMENTATION

	2 - 1 - 4 - 3 -				G		a <u>1</u> €			8 9 10		68)	12
Step	1	2	3	4	5	6	7	8	9	10	11	12	
1. Choose a fault. Sa0 at G2.	X	1	1	X	X	Ď	x	X	X	X	X	X	PCDF G2 DF{G5,G6}
6. Choose G5 & G6	1	1	1	1	X	D'	x	Х	D	D	х	Х	DF{G8}
7. Forward Implication.	1	1	1	3	x	D'	Х	1	D	D	1	D'	JF{G4, G7}
8.Backward Implication	1	ŝ	1	1	0	D'	0	1	D	D	1	D'	

9/3/2023


COMMUNICATION

Advantage

1. D algorithm is *complete ATPG* Guarantee to generate a pattern for a testable fault

Disadvantage

1. Internal nodes are also assigned values hence the search space is large 2. Does not help in choosing best D-Frontier and relies on back tracking

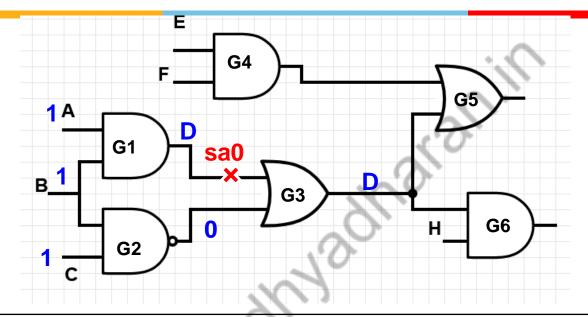
ELECTRONICS

9/3/2023

ELECTRICAL

PODEM

COMMUNICATION


- 1. Only allow assignments to *PI only* Doesn't assign internal nodes Greatly reduces search tree
- 2. Assigned PI are then forward implication No justification needed
- 3. Flip last PI assignment when two conditions:

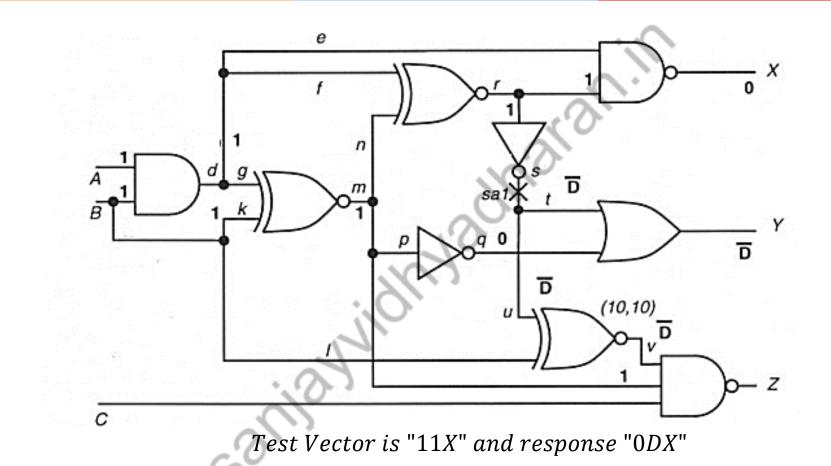
ELECTRONICS

A. Fault not activatedB. No propagation path to any output

ELECTRICAL

PODEM

- 1. Choose A=1 B=1 to det D at the desired fault location
- 2. Use G3 to Propagate. Single Option. C=1

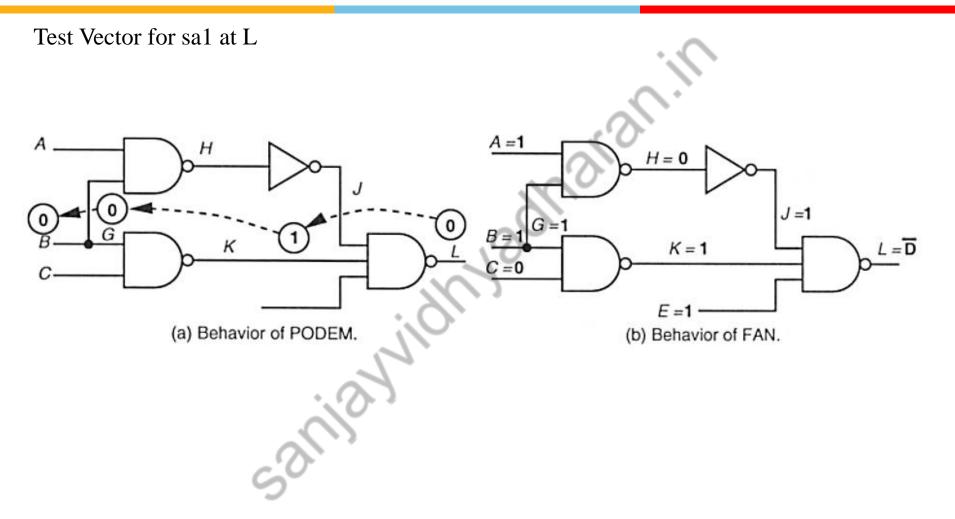

3. Choose G6 easiest path to propagate . Level or SCOAP analysis will give the easiest path.

4.H=1. C=1 Depth First

ELECTRICAL

Minimum number of logic gates between the start of the path and any PO. Objectives were selected by level to pick the *easiest* objective to achieve. After objectives were selected, backtracing determined PI assignments to justify these objectives.

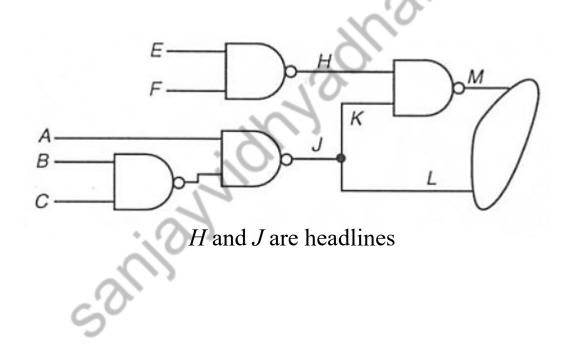
PODEM


The basic idea of PODEM is to limit the search space to primary inputs without compromising the completeness. That is done by using the backtrace

COMMUNICATION

ELECTRONICS

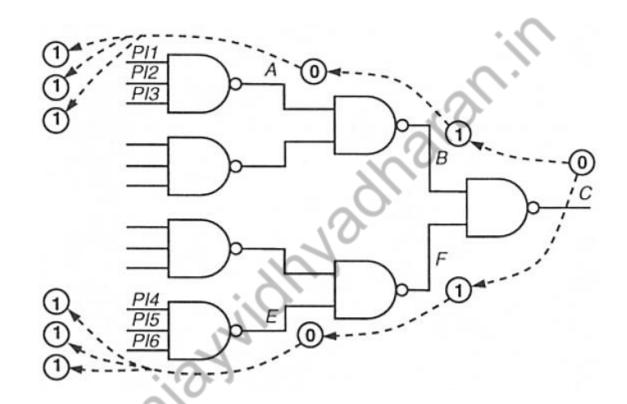
9/3/2023


ELECTRICAL

ELECTRICAL

ELECTRONICS

Headlines. Fujiwara and Shimono developed the notion of *headlines*, which are points where the circuit can be partitioned such that a cone of logic driven by PIs can be isolated from the rest of the circuit by cutting a single line, called the *headline*. This means that either a logic 0 or a logic 1 can be justified from the headline back to the circuit PIs.

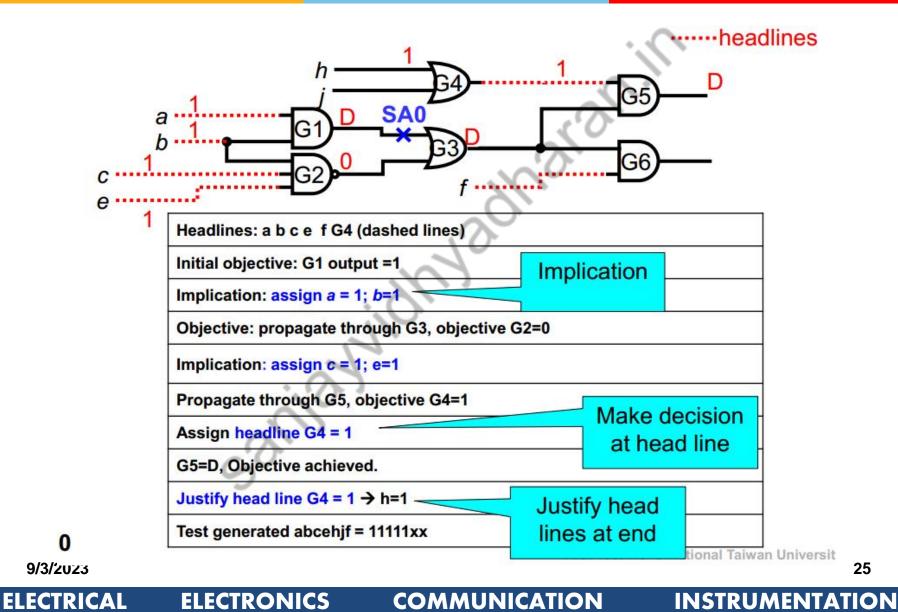


COMMUNICATION

9/3/2023

ELECTRICAL

ELECTRONICS


PODEM will make six backtraces to justify C=0. The first backtrace sets objectives of B=1 and A=0 and finally assigns PI1 as 1. This process is laboriously repeated five more times until we have PI2 =1, PI3 =1, PI4=1 PI5=1 and PI4=1 as internal node are not assigned any value. This is happening because PODEM backtraces in a depth-first fashion. 9/3/2023 24

ELECTRICAL

ELECTRONICS

COMMUNICATION

INSTRUMENTATION

References

 "Essentials of Electronic Testing, for Digital, Memory and Mixed-Signal VLSI Circuits", Michael L. Bushnell and Vishwani D. Agrawal, – Kluwer Academic Publishers (2000).

 Video lectures by Professor James Chien-Mo Li
 Lab. of Dependable Systems Graduate Institute of Electronics Engineering National Taiwan University
 https://www.youtube.com/watch?v=yfcoKOUV5DM&list=PLvd8d-SyI7hjk_Ci0zpTqImAtpEjdK5JF&index=1

ELECTRICAL

ELECTRONICS

3. NPTEL Lectures https://www.youtube.com/watch?v=M8VEEaYwlQ&list=PLbMVogVj5nJTClnafWQ9F K2nt3cGG8kCF&index=31

COMMUNICATION

INSTRUMENTATION

INSTRUMENTATION

ELECTRONICS

ELECTRICAL

COMMUNICATION