Testability of VLSI

Lecture 6B: Introduction to Automatic Test Pattern Generation

By Dr. Sanjay Vidhyadharan

COMMUNICATION

INSTRUMENTATION

ELECTRICAL

ELECTRONICS

Testing

Thermal Imaging.

Powering up the chip and application of few test pattern and using high resolution IR camera to capture hot and cold areas of chip.

https://www.infratec.eu/thermography/thermography-on-the-trail-of-the-fault/

COMMUNICATION

8/27/2023

ELECTRICAL

ELECTRONICS

ATPG

8/27/2023

COMMUNICATION

ATPG

Max Structural Test vectors required 64 * (10 + 17)

Actaul Structural Test vectors required could be smuch lesseras multiple s – a faults gets detected with single vector

ELECTRICAL

ELECTRONICS

COMMUNICATION

ATPG

COMMUNICATION

The first seven vectors cover all stuck-at faults. One may, therefore, use only the first seven vectors in the manufacturing test. Possible only for Modular Structures.

ELECTRONICS

8/27/2023

ELECTRICAL

1. Exhaustive.

In this approach, for an *n*-input circuit, we generate all input patterns.

The circuit is partitioned into cones of logic, each with 15 or fewer inputs. We can then perform exhaustive test-pattern generation for each cone.

However, those faults that require multiple cones to be activated in a synergistic way during testing may not be tested.

Vast changes in compute time, depending on the order in which circuit PIs are expanded in the BDD

8/27/2023

2. Random – Used With Algorithmic Methods

ELECTRONICS

COMMUNICATION

8/27/2023

ELECTRICAL

INSTRUMENTATION

8/27/2023

COMMUNICATION

3. Deterministic ATPG Symbolic – Boolean Difference *For few variables*

F = AB + BC + CA $F = \overline{A}(BC) + A(B + C + BC)$ Shanon $F = \overline{A}(BC) + A(B + C)$ $Fg = BC \oplus (B + C) = 1$

 $Test \ vector(b, c) = (1,0), (0,1)$ S-a-0 at A

			E	BC		• •	3	1		E	BC					BC			
		00	01	11	10	6	~		00	01	11	10				00	01	11	10
A	0	0	1	1	3	P	A	0	0	0	1	0		A	0	0	/1	0	/1`\
	1	0	0	1	0			1	0	1	1	1			1	0	1	0	1
$F = \overline{AB} + BC + C\overline{A}$ $F = AB + BC + CA$									1										

8/27/2023

А

в

3. Deterministic ATPG

- F = AB + C
- $F = \overline{A}(C) + A(B + C)$ Shanon
- $Fg = C \oplus (B + C) = 1$
- Test vector(b, c) = (1,0) S-a-0 at A

$$\frac{\delta F}{\delta A} = \frac{\delta (AB + C)}{\delta A} = \bar{C}B$$

8/27/2023

0

1

Α

COMMUNICATION

The ATPG *algebra* is a higher-order Boolean set notation with the purpose of representing both the "good" and the "failing" circuit (or machine) values simultaneously. This has the advantage of requiring only *one* pass of ATPG to determine signal values for both machines.

Since a test vector requires that a difference be maintained between the two machines, it is computationally fastest to represent both machines in the algebra, rather than maintaining them separately.

8/27/2023

COMMUNICATION

Roth showed how multiple-path sensitization, required to test certain combinational circuits, could be done with his five-valued algebra given in Table below.

Symbol	Meaning	Roth's 5-valued algebra					
		Good	Failing				
		machine	machine				
D	(1/0)		0				
\overline{D}	(0/1)	0 0	1				
0	(0/0)	0	0				
1	(1/1)	1	1				
X	(X/X)	X	X				
C	0						

8/27/2023

				0.	_		
Symbol	Meaning	Roth's 5-	valued algebra	Muth's 9-valued algebra			
		Good	Failing	Good	Failing		
		machine	machine	machine	machine		
D	(1/0)	1	0	1	0		
\overline{D}	(0/1)	0	¥0.	0	1		
0	(0/0)	0	0	0	0		
1	(1/1)	1	1	1	1		
X	(X/X)	X	X	X	X		
G0	(0/X)	2	-	0	X		
G1	(1/X)	·(Ð.)	-	1	X		
F0	(X/0)	$\sim \sim$	-	X	0		
F1	(X/1)	0 -	_	X	1		

8/27/2023

8/27/2023

D Algebra

8/27/2023

COMMUNICATION

3. Deterministic ATPG

Sensitization, Propagation and Justification. Many Iterations may be required. Different Paths and Simultaneous Multiple paths may be required

1. Sensitization: Test Vector D to detect s-a-0 at B

- 2. Propagation: Select Path B-f-h-k-L
- 3. Justify: For Path B-f-h-k-L (A=1, E=1, j=0, i=1(Conflict as i cannot be made 1)
- *4. Iteration Propagation: Select Path B-g-i-j-k-L*
- 5. Justify (A=0, E=1,C=1), $i=\mathbf{D}$, $j=\overline{\mathbf{D}}$, $k=\overline{\mathbf{D}}$ $L=\mathbf{D}$

In one go Normal and Faulty o/p obtained ABCD (0111) L= 0 Good, L=1 B s-a-0 8/27/2023

Redundancy Definition for Testing Purposes

Combinational ATPG algorithms provide a major side benefit. *They can determine when the circuit has unnecessary, or redundant, hardware.*

In combinational circuits untestable faults indicate redundant hardware. In testing, one can remove redundant hardware and the circuit will still function exactly the same way as before.

COMMUNICATION

8/27/2023

ELECTRICAL

ELECTRONICS

Static Glitch Example

Consider the following circuit with delays where only one input (input b) changes...

Draw a timing diagram to see what happens at output with delays.

From the logic expression, we see that b changing should result in the output remaining at logic level 1...

Due to delay, the output goes 1->0->1 and this is an output glitch; we see a static-1 hazard.

ELECTRONICS

8/2//2023

Static Glitch Elimination

The extra product term does not include the changing input variable, and therefore serves to prevent possible momentary output glitches due to this variable.

COMMUNICATION

ELECTRICAL

ELECTRONICS

INSTRUMENTATION

Static Glitch Elimination

The redundant product term is not influenced by the changing input.

COMMUNICATION

ELECTRICAL

ELECTRONICS

INSTRUMENTATION

Redundancy in Testing

References

 "Essentials of Electronic Testing, for Digital, Memory and Mixed-Signal VLSI Circuits", Michael L. Bushnell and Vishwani D. Agrawal, – Kluwer Academic Publishers (2000).

 Video lectures by Professor James Chien-Mo Li
 Lab. of Dependable Systems Graduate Institute of Electronics Engineering National Taiwan University
 https://www.youtube.com/watch?v=yfcoKOUV5DM&list=PLvd8d-SyI7hjk_Ci0zpTqImAtpEjdK5JF&index=1

ELECTRICAL

ELECTRONICS

3. NPTEL Lectures https://www.youtube.com/watch?v=M8VEEaYwlQ&list=PLbMVogVj5nJTClnafWQ9F K2nt3cGG8kCF&index=31

COMMUNICATION

INSTRUMENTATION

INSTRUMENTATION

ELECTRONICS

ELECTRICAL

COMMUNICATION