Testability of VLSI

Lecture 3: Fault Collapsing

By Dr. Sanjay Vidhyadharan

ELECTRICAL

ELECTRONICS

COMMUNICATION

INSTRUMENTATION

Functional Versus Structural Testing

COMMUNICATION

Structural Test vectors required 64 * (10 + 17)

ELECTRONICS

Single Stuck-at faults

Minimum test length for 100% SSF fault coverage ? 3

Input	Fault-free	Faulty Output Value with SSF							
аb	Output	<i>a</i> /0	<i>a</i> /1	<i>b</i> /0	<i>b</i> /1	<i>c</i> /0	<i>c</i> /1		
0 0	0	0	0	0	0	0	1		
0 1	0	0	1	0	0	0	1		
11		<u>0</u>	1	<u>0</u>	1	<u>0</u>	1		
10	0	0	0	0	1	0	1		

No requirement to exactly identify which fault. Entire gate is to be discarded

ELECTRICAL

ELECTRONICS

COMMUNICATION

Delay faults

COMMUNICATION

ELECTRICAL

ELECTRONICS

INSTRUMENTATION

Transistor faults

Automation available to optimize Stuck-at and Stuk-open Fault

COMMUNICATION

ELECTRONICS

ELECTRICAL

5

INSTRUMENTATION

Fault Detection

- A test (vector) *t* detects a fault *f* iff $z(t) \oplus z_f(t) = 1$
 - t detects $f \ll z_f(t) \neq z(t)$

ELECTRONICS

Example

The test 001 detects f because $z_1(001)=0$ while $z_{1f}(001)=1$

COMMUNICATION

8/6/2023

Fault Sensitization

1. Fault Sensitization: We need to choose a test vector that activates the fault site with complementary signal

Fault Propagation

2. Fault Propagation: We need to chose a suitable path for propagate the fault to a primary output.

Fault Justification

3. Fault Justification: We need to work from output to input to assign test vectors to primary inputs.

COMMUNICATION

ELECTRICAL

ELECTRONICS

Fault Detectability

A fault *f* is said to be detectable if there exists a test *t* that detects *f*; otherwise, *f* is an undetectable fault

8/6/2023

ELECTRONICS

Fault Coverage

Complete detection test set: A set of tests that detect any detectable faults in a class of faults

The quality of a test set is measured by fault coverage

Fault coverage: Fraction of faults that are detected by a test set

>95% - 99.9% is typically required

8/6/2023

ELECTRICAL

COMMUNICATION

Fault equivalence.

1. Two faults of a Boolean circuit are called equivalent iff they transform the circuit such that the two faulty circuits have identical output functions.

2. Equivalent faults are also called indistinguishable and have exactly the same set of tests.

Faults f and g are *functionally equivalent* (or simply *equivalent*) if faulty outputs of them are identical for *all* test patterns

	Input		Output							
	A B		good	A/0	C/0	B/0	A/1	C/1	B/1	
	0	0	0	0	0	0	0	1	0	
	0	1	0	0	0	0	1	1	0	
	1	0	0	0	0	0	0	1	1	
8/6/2023	1	1	1	<u>0</u>	<u>0</u>	<u>0</u>	1	1	1	

ELECTRICAL

COMMUNICATION

Input		Output							
Α	В	Good	A/0	B/0	C/0	A/1	B/1	C/1	
0	0	0	0	0	0	1	1	1	
0	1	Ň	1	0	0	1	1	1	
1	0	1	0	0	0	1	1	1	
1	1	1	1	1	0	1	1	1	

8/6/2023

Input		Output							
Α	В	Good	A/0	B/0	C/0	A/1	B/1	C/1	
0	0	A	1	1	0	1	1	1	
0	1	Ň	1	1	0	0	1	1	
1	0	1	1	1	0	0	0	1	
1	1	0	1	1	0	1	1	1	

8/6/2023

8/6/2023

ELECTRONICS

COMMUNICATION

INSTRUMENTATION

8/6/2023

ELECTRONICS C

COMMUNICATION

Why Equivalence Fault Collapsing (EFC)?

- Reduce number of faults so that
- Speed up ATPG
- Shorten test set (6 to 4 sa faults for 2 i/p gates)

8/6/2023

EFC on Fanout-free Circuits

EFC Rules

- (1) both stuck-at one and zero faults for every primary output
- (2) one collapsed fault for each gate input

Fault collapsing reduces 18 s-a faults to 12

ELECTRONICS

COMMUNICATION

ELECTRICAL

INSTRUMENTATION

Fanout stem faults are NOT always equivalent to fanout branch faults

Example:

- E/0 is equivalent to F/0
- * but not equivalent to L/0
- The other faults are NOT equivalent

Input			Output							
Α	B	С	good	E/0	F/0	L/0	E/1	F/1	L/1	
0	0	0	0	0	0	0	<u>1</u>	<u>1</u>	0	
0	0	1	1	0	<u>0</u>	1	1	1	1	
0	1	0	1	0	<u>0</u>	1	1	1	1	
0	1	1	1	<u>0</u>	<u>0</u>	1	1	1	1	
1	0	0	0	0	0	0	0	<u>1</u>	0	
1	0	1	5	0	0	<u>1</u>	0	0	0	
1	1	0	0	0	0	<u>1</u>	0	0	0	
1	1	1	0	0	0	<u>1</u>	0	0	0	

8/6/2023

- 2 partitions
- Originally 18 faults, → after EFC 10 faults

• NOTE:

- Inverter G₃ ignored
- because its input fault s@0 is always equivalent to its output s@1 fault

8/6/2023

ELECTRICAL

COMMUNICATION

Detecting set of fault $f(T_f)$ = set of all possible test patterns that detect fault f

Fault f dominates fault g if the detecting set of f contains that of g

8/6/2023

ELECTRICAL ELECTRONICS

COMMUNICATION

8/6/2023

[2] Video lectures by Professor James Chien-Mo Li

8/6/2023

ELECTRICAL

ELECTRONICS

COMMUNICATION

8/6/2023

COMMUNICATION

ELECTRICAL

ELECTRONICS

COMMUNICATION

INSTRUMENTATION

ELECTRONICS

8/6/2023

Fanout Stem and Branches

• Originally 18 faults, \rightarrow after EFC 10 faults \rightarrow DFC 7 faults

8/6/2023

ELECTRICAL ELECTRONICS

COMMUNICATION

Checkpoint Theorem

Primary inputs and fanout branches of a combinational circuit are called *checkpoints*

Checkpoint theorem: "A test set that detects all single (multiple) stuck-at faults on all checkpoints of a combinational circuit, also detects all single (multiple) stuck-at faults in that circuit."

Checkpoint Theorem

10 faults on checkpoints

ELECTRONICS

8/6/2023

ELECTRICAL

Originally 18 faults, after EFC 10 faults, after DFC 7 faults

[2] Video lectures by Professor James Chien-Mo Li

COMMUNICATION

INSTRUMENTATION

Checkpoint Theorem

Chkpt is a Simpler Alternative to EFC/DFC

DFC has issues in sequential circuits and EFC is most preferred technique for ATPG

[2] Video lectures by Professor James Chien-Mo Li

COMMUNICATION

ELECTRONICS

INSTRUMENTATION

8/6/2023

Collapse Ratio

[2] Video lectures by Professor James Chien-Mo Li

COMMUNICATION

INSTRUMENTATION

8/6/2023

ELECTRICAL

ELECTRONICS

Simulation for Design Verification

True-value means that the simulator will compute the response for given input stimuli without injecting any faults in the design. The input stimuli are also based on the specification.

A frequently used strategy is to exercise all functions with only *critical* data patterns. This is because the simulation of the exhaustive set of data patterns can be too expensive

8/6/2023

ELECTRICAL ELECTRONICS

COMMUNICATION

INSTRUMENTATION

True Value Simulation

- A design can be first simulated at a higher behavior level (such as C). Netlist not required Does not contain the detailed timing information.
 - No electrical behavior

ELECTRONICS

- 2, Once this design is verified, higher-level blocks are replaced by logic-level netlists. At this point, a **logic simulator** is used for verification.
- 3. The process may be repeated by replacing some or all portions by transistor-level or circuit-level implementations.

COMMUNICATION

Simulation is used in this way for verifying very large electronic systems.

The weakness of this method is its dependence on the designer's heuristics used in generating the input stimuli.

8/6/2023

ELECTRICAL

Simulation for Design Verification

Simulation for Design Verification

Timing analysis of 2 followed by 6 or 3 followed by 7 where carry propagates through the chain

COMMUNICATION

8/6/2023

ELECTRICAL

ELECTRONICS

Fault simulation for test generation

COMMUNICATION

8/6/2023

ELECTRICAL

ELECTRONICS

INSTRUMENTATION

References

 "Essentials of Electronic Testing, for Digital, Memory and Mixed-Signal VLSI Circuits", Michael L. Bushnell and Vishwani D. Agrawal, – Kluwer Academic Publishers (2000).

 Video lectures by Professor James Chien-Mo Li
Lab. of Dependable Systems Graduate Institute of Electronics Engineering National Taiwan University
https://www.youtube.com/watch?v=yfcoKOUV5DM&list=PLvd8d-SyI7hjk_Ci0zpTqImAtpEjdK5JF&index=1

COMMUNICATION

INSTRUMENTATION

ELECTRONICS