Introduction to Radars Lecture 4: MTI and Pulsed Doppler Radars

By Dr. Sanjay Vidhyadharan

ELECTRONICS COMM

ELECTRICAL

COMMUNICATION INSTRUMENTATION

Classification of Radars

ELECTRONICS COMMUNICATION

ELECTRICAL

Primary Radars

COMMUNICATION

ELECTRICAL

ELECTRONICS

Modulated CW Radar

Unmodulated CW Radar

The purpose of the doppler amplifier is to eliminate echoes from stationary targets and to amplify the doppler echo signal to a level where it can indicate a moving object.

The low-frequency cutoff must be high enough to reject d-c component caused by stationary targets, but it should be low enough to pass the smallest doppler frequency expected

INSTRUMENTATION

ELECTRICAL ELECTRONICS COMMUNICATION

Moving Target Indicators and Pulsed Doppler Radar

A pulse radar that utilizes the doppler frequency shift as a means for discriminating moving from fixed targets is called an **MTI** (moving target indication) or a **Pulse Doppler** radar

ELECTRICAL

ELECTRONICS

COMMUNICATION

INSTRUMENTATION

MTI Block Diagram

ELECTRICAL

ELECTRONICS

COMMUNICATION

INSTRUMENTATION

MTI A-Scope

Range

ELECTRONICS

COMMUNICATION

Two Pulse MTI Canceller

COMMUNICATION

ELECTRICAL

ELECTRONICS

9

Filter Characteristics of the Delay-line Canceler

The video signal received from a particular target at a range R,

ELECTRONICS

ELECTRICAL

$$V_1 = k \sin(2\pi f_d t - \emptyset_0)$$

The signal from the previous transmission, which is delayed by a time T = pulse repetition interval, is

$$V_2 = k \sin[2\pi f_d(t - T) - \phi_0]$$

$$V_1 - V_2 = 2k \sin \pi f_d T \cos(2\pi f_d (t - \frac{T}{2}) - \emptyset_0)$$

COMMUNICATION

Filter Characteristics of the Delay-line Canceler

 $f_d = \frac{n}{T} = n * f_p$ Blind Speeds $v_n = \frac{\lambda f_d}{2} = \frac{n\lambda}{2T} = \frac{n\lambda f_p}{2}$ n = 1,2,3,...**Blind Speeds** $f_d = \frac{2 \, dR}{\lambda dt} = \frac{2 v_r}{\lambda}$

The blind speeds are one of the limitations of pulse MTI radar which do not occur with CW radar

MTI Blind Speed and Unambiguous range

12

ELECTRICAL ELECTRONICS

COMMUNICATION

Moving Target Indicators and Pulsed Doppler Radar

Moving Target Indicators

- 1. Just separate moving targets from clutter
- 2. Usually operates with ambiguous doppler measurement (so-called blind speeds) but with unambiguous range measurement (no second-time-around echoes).
- 3. Low PRF
- 4. Clutter Removal

Pulsed Doppler Radar

1. Usually operates with unambiguous doppler measurement (no blind speeds) but with ambiguous range measurement (second-time-around echoes).

COMMUNICATION

2. High PRF

ELECTRICAL

3. Separate targets into different velocity regimes

ELECTRONICS

Delay Line Cancellers

MULTIPLE OR STAGGERED PRF

 $\frac{4}{T_1} = \frac{5}{T_2}$

The closer the ratio $T_1 : T_2$ approaches unity, the greater will be the value of the first blind speed. However, the first null in the vicinity of fd = l/Tl becomes deeper. T1 : T2 is a compromise between the value of the first blind speed and the depth of the nulls within the filter pass band

ELECTRICAL

RANGE-GATED DOPPLER FILTERS

The width of the range gates depends upon the range accuracy desired and the complexity which can be tolerated, but they are usually of the order of the pulse width. the output from each gate may be applied to a narrowband filter since the pulse shape need no longer be preserved for range resolution.

ELECTRICAL

ELECTRONICS

COMMUNICATION

INSTRUMENTATION

ELECTRONICS

ELECTRICAL

COMMUNICATION