

INSTRUMENTATION

Analog IC Design : 2022-23 Lecture 9 **Frequency Response of Single Stage** Amplifiers By Dr. Sanjay Vidhyadharan

ELECTRICAL ELECTRONICS

COMMUNICATION

High Pass Filters

COMMUNICATION

10/1/2022

ELECTRICAL

ELECTRONICS

High Pass Filters

ELECTRONICS

COMMUNICATION

Low Pass Filters

10/1/2022

COMMUNICATION

INSTRUMENTATION

Low Pass Filters

For $\omega > \omega_0$ Slope 20 dB/decade for $\omega \gg \omega_0 \phi = -90^{\circ}$ 10/1/2022

ELECTRICAL

ELECTRONICS

COMMUNICATION

Amplifier Transfer Function

Direct-Coupled (DC) amplifiers exhibit low-pass characteristics – flat gain from DC to ω_H

Capacitively coupled amplifiers exhibit band-pass characteristics, attenuation at low frequency due to impedance from coupling capacitances increasing for low frequencies Gain drops due to effects of internal capacitances of the device

COMMUNICATION

Bandwidth is the frequency range over which gain is flat BW = $\omega_H - \omega_L \approx \omega_H (\omega_H >> \omega_L)$

Gain-Bandwidth Product (GB) – Amplifier figure of merit GB = $A_M \omega_H$

where A_M is the midband gain

It is possible to trade off gain for bandwidth

ELECTRONICS

10/1/2022

ELECTRICAL

High-Frequency Response

High-Frequency Response

We can express function FH(s) with the general form:

$$F_{H}(s) = \frac{(1+s/\omega_{Z1})(1+s/\omega_{Z2})\cdots(1+s/\omega_{ZnH})}{(1+s/\omega_{P1})(1+s/\omega_{P2})\cdots(1+s/\omega_{PnH})}$$

Where ω_{P} and ω_{Z} represent the frequencies of high-frequency poles and zeros The zeros are usually at infinity or sufficiently high frequency such that the numerator $\rightarrow 1$ and assuming there is one dominant pole (other poles at much higher frequencies), we can approximate the function as...

– This simplifies the determination of the BW or $\omega_{\rm H}$ –

If a dominant pole does not exist, the upper 3-dB frequency ω_H can be found from a plot of $|F_H(j\omega)|$. Alternatively, we can approximate with following formula (see S&S p593 for derivation).

COMMUNICATION

$$\omega_{H} = \frac{1}{\sqrt{\frac{1}{\omega_{P1}^{2}} + \frac{1}{\omega_{P2}^{2}} + \dots - \frac{2}{\omega_{Z1}^{2}} - \frac{2}{\omega_{Z2}^{2}} \dots}}$$

- Note: if ω_{P1} is a dominant pole, then reduces to $\omega_{H} = \omega_{P1}$

ELECTRONICS

ELECTRICAL

INSTRUMENTATION

Open-Circuit Time Constant Method

The approach:

- For each capacitor:
 - set input signal to zero
 - replace all other capacitors with open circuits
 - find the effective resistance (R_{io}) seen by the capacitor C_i
- Sum the individual time constants (RCs or also called the open-circuit time constants)

$$b_1 = \sum_{i=1}^{nH} C_i R_{io}$$

• This method for determining b_1 is exact. The approximation comes from using this result to determine ω_H . 1

$$\mathcal{D}_H \cong \frac{1}{\sum_{i=1}^{nH} C_i R_{io}}$$

10/1/2022

Miller's Theorem

10/1/2022

ELECTRICAL

10

ELECTRONICS

COMMUNICATION

10/1/2022

ELECTRICAL

ELECTRONICS

COMMUNICATION

INSTRUMENTATION

Find the RC time constants associated with $C_{\rm gd}$ and $C_{\rm gs}$ in the following circuit

$$\mathbf{v}_{i} \stackrel{\mathsf{R}_{s}}{\stackrel{\mathsf{v}_{gs}}{\stackrel{\mathsf{r}_{$$

Replace C_{gd} with an open-ckt and find the resistance seen by C_{gs}

$$\begin{array}{c} & & \\ & &$$

Replace C_{gs} with an open-ckt and find the resistance seen by C_{ad}

10/1/2022

COMMUNICATION

10/1/2022

ELECTRICAL

ELECTRONICS

INSTRUMENTATION

Redraw the high-frequency small-signal model using Miller's theorem

Assuming a dominant pole introduced by C_{gd} in parallel with C_{gs}

$$\omega_{H} \cong \frac{1}{\left[C_{gs} + C_{gd}\left(1 + g_{m}R_{L}'\right)\right]R_{s}} = \frac{1}{C_{T}R_{s}}$$

COMMUNICATION

Miller multiplication of C_{ad} results in a large input capacitance

ELECTRONICS

10/1/2022

ELECTRICAL

The exact solution gives a zero (at a high frequency) and two poles

ELECTRONICS

Notice that the s term is the same as the solution using the OCT method

COMMUNICATION

10/1/2022

ELECTRICAL

COMMUNICATION

10/1/2022

ELECTRICAL

ELECTRONICS

INSTRUMENTATION

Frequency Response of CG Amplifier

10/1/2022

Frequency Response of Source Followers

COMMUNICATION

10/1/2022

ELECTRICAL

ELECTRONICS

Frequency Response of Source Followers

- Other important aspects of a source follower are its input and output impedances (since they are often used as buffers)
- Let's calculate the input impedance using the high-freq small-signal models

$$Z_{in} = \frac{1}{sC_{gs}} + \left(1 + \frac{g_m}{sC_{gs}}\right) \frac{1}{g_{mb} + sC_L}$$

Now calculate the output impedance (ignoring g_{mb} for simplicity)

$$Z_{out} = \frac{R_s s C_{gs} + 1}{g_m + s C_{gs}}$$

- At low frequency, $Z_{out} \approx 1/g_m$
- At high frequency, $Z_{out} \approx R_s$
- Shape of the response depends on the relative size of R_s and 1/g_m

 Z_{out} can look inductive or capacitive depending on R_s and $1/g_m$

10/1/2022

ELECTRICAL

ELECTRONICS

COMMUNICATION

INSTRUMENTATION

Frequency Response of Cascode Amplifier

10/1/2022

ELECTRICAL

ELECTRONICS

COMMUNICATION

INSTRUMENTATION

Frequency Response of Differential Amplifier

COMMUNICATION

- The response is identical to that of a common-source stage

10/1/2022

ELECTRICAL

INSTRUMENTATION

Frequency Response of Differential Amplifier

10/1/2022

COMMUNICATION

10/1/2022

COMMUNICATION