

Analog IC Design : 2022-23 Lecture 12 Stability and Oscillators

By Dr. Sanjay Vidhyadharan

ELECTRICAL ELECTRONICS

COMMUNICATION

INSTRUMENTATION

10/29/2022

COMMUNICATION

10/29/2022

ELECTRICAL

ELECTRONICS

Single Pole Response

10/29/2022

COMMUNICATION

Single Pole Response

COMMUNICATION

ELECTRONICS

ELECTRICAL

Two Pole Response

10/29/2022

ELECTRICAL

ELECTRONICS

COMMUNICATION

INSTRUMENTATION

Three Pole Response

COMMUNICATION

10/29/2022

ELECTRICAL

ELECTRONICS

10/29/2022

ELECTRICAL

ELECTRONICS

INSTRUMENTATION

10/29/2022

ELECTRICAL

COMMUNICATION

INSTRUMENTATION

(a) a component at ω_1 is sensed at input, (b) the component returns to subtractor with a 180 ° phase shift, (c) the subtractor enhances the signal at node B.

A negative feedback system may become unstable if the forward amplifier introduces a phase shift of $-180 \circ$ at a finite frequency, ω_1 , and the loop transmission |KH| is equal to unity at that frequency

COMMUNICATION

10/29/2022

ELECTRICAL

ELECTRONICS

Example-1

We wish to apply negative feedback with K = 1 around the three-stage amplifier shown in Fig. 12.67(a). Neglecting other capacitances and assuming identical stages, plot the frequency response of the circuit and determine the condition for stability. Assume $\lambda = 0$.

tenth of this frequency, it reaches -135^{0} at $\omega_{_{D}}$, and approaches -270^{0}

10/29/2022

Example-1

We wish to apply negative feedback with K = 1 around the three-stage amplifier shown in Fig. Neglecting other capacitances and assuming identical stages, plot the frequency response of the circuit and determine the condition for stability. Assume $\lambda = 0$.

10/29/2022

ELECTRONICS

Example-2

A common-source stage is placed in a unity-gain feedback loop as shown in Fig. Explain why this circuit does not oscillate.

Since the circuit contains only one pole, the phase shift cannot reach $180 \circ$ at any frequency. The circuit is thus stable.

COMMUNICATION

10/29/2022

ELECTRICAL

ELECTRONICS

INSTRUMENTATION

Frequency Compensation

COMMUNICATION

10/29/2022

ELECTRICAL

ELECTRONICS

INSTRUMENTATION

Frequency Compensation

Miller Compensation

COMMUNICATION

10/29/2022

ELECTRICAL

ELECTRONICS

INSTRUMENTATION

COMMUNICATION

10/29/2022

ELECTRICAL

18

ELECTRONICS

10/29/2022

ELECTRONICS

COMMUNICATION

10/29/2022

ELECTRONICS

COMMUNICATION

INSTRUMENTATION

10/29/2022

ELECTRONICS CON

COMMUNICATION

INSTRUMENTATION

10/29/2022

ELECTRONICS COM

COMMUNICATION

10/29/2022

ELECTRONICS

COMMUNICATION

That is, we choose $R_{F1} \ge 2R_{F2}$.

10/29/2022

ELECTRONICS

COMMUNICATION

10/29/2022

COMMUNICATION