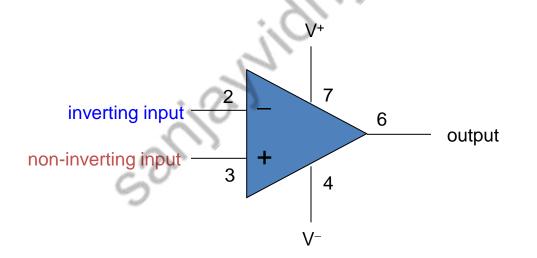


Analog IC Design : 2022-23 Lecture 11 Operational Amplifiers

By Dr. Sanjay Vidhyadharan


ELECTRICAL ELECTRONICS

COMMUNICATION

INSTRUMENTATION

Operational Amplifiers

Op-amps (amplifiers/buffers in general) are drawn as a triangle in a circuit schematic There are two inputs inverting and non-inverting And one output Also power connections (note no explicit ground)

COMMUNICATION

ELECTRONICS

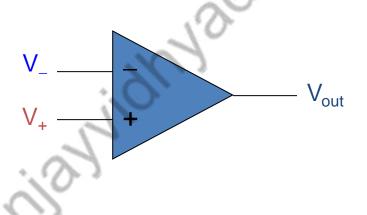
10/22/2022

ELECTRICAL

The Ideal Operational Amplifiers

- Infinite voltage gain
 - a voltage difference at the two inputs is magnified infinitely
 - in truth, something like 200,000
 - means difference between + terminal and terminal is amplified by 200,000!
- Infinite input impedance
 - no current flows into inputs
 - in truth, about $10^{12} \Omega$ for FET input op-amps
- Zero output impedance
 - rock-solid independent of load
 - roughly true up to current maximum (usually 5–25 mA)
- Infinitely fast (infinite bandwidth)
 - in truth, limited to few MHz range
 - slew rate limited to 0.5–20 V/ μ s

10/22/2022


Op-amp without feedback

• The internal op-amp formula is:

ELECTRONICS

 $V_{out} = gain \times (V_+ - V_-)$

- So if V_{+} is greater than V_{-} , the output goes positive
- If V_{-} is greater than V_{+} , the output goes negative

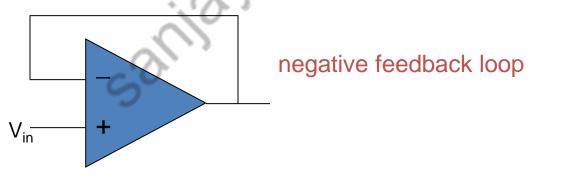
• A gain of 200,000 makes this device (as illustrated here) practically useless

COMMUNICATION

10/22/2022

ELECTRICAL

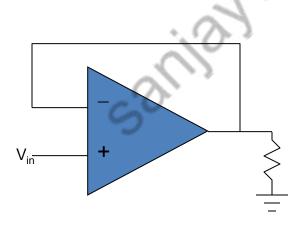
Negative feedback


- Infinite gain would be useless except in the self-regulated negative feedback regime
 - negative feedback seems bad, and positive good—but in electronics positive feedback means runaway or oscillation, and negative feedback leads to stability
- Imagine hooking the output to the inverting terminal:
- If the output is less than V_{in} , it shoots positive

ELECTRONICS

10/22/2022

ELECTRICAL


- If the output is greater than V_{in}, it shoots negative
 - result is that output quickly forces itself to be exactly V_{in}

Negative feedback

- Even if we load the output (which as pictured wants to drag the output to ground)...
 - the op-amp will do everything it can within its current limitations to drive the output until the inverting input reaches V_{in}
 - negative feedback makes it self-correcting
 - in this case, the op-amp drives (or pulls, if V_{in} is negative) a current through the load until the output equals V_{in}
 - so what we have here is a buffer: can apply V_{in} to a load without burdening the source of V_{in} with *any* current!

COMMUNICATION

ELECTRONICS

10/22/2022

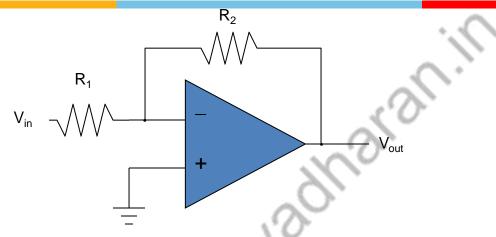
ELECTRICAL

Important note: op-amp output terminal sources/sinks current at will: not like inputs that have no current flow

INSTRUMENTATION

Op-Amp "Golden Rules"

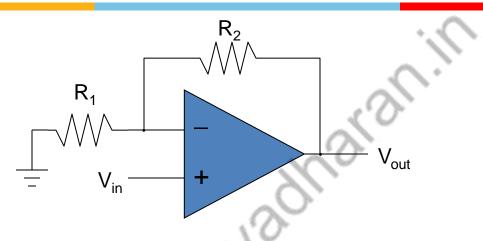
- When an op-amp is configured in *any* negativefeedback arrangement, it will obey the following two rules:
 - The inputs to the op-amp draw or source no current (true whether negative feedback or not)
 - The op-amp output will do whatever it can (within its limitations) to make the voltage difference between the two inputs zero


COMMUNICATION

10/22/2022

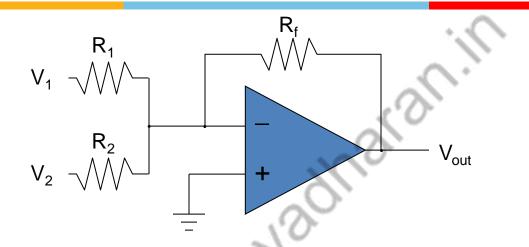
ELECTRICAL

ELECTRONICS


Inverting amplifier

- Applying the rules:
 terminal at "virtual ground"
 - so current through R_1 is $I_f = V_{in}/R_1$
- Current does not flow into op-amp (one of our rules)
 - so the current through R_1 must go through R_2
 - voltage drop across R_2 is then $I_f R_2 = V_{in} \times (R_2/R_1)$
- So $V_{out} = 0 V_{in} \times (R_2/R_1) = -V_{in} \times (R_2/R_1)$
- Thus we amplify V_{in} by factor $-\frac{R_2}{R_1}$
 - negative sign earns title "inverting" amplifier
- Current is *drawn into* op-amp output terminal

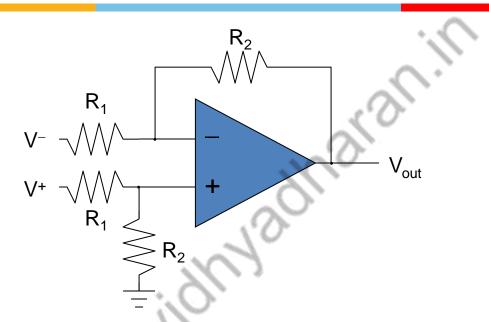
10/22/2022


Non-inverting Amplifier

- Now neg. terminal held at V_{in}
 - so current through R_1 is $I_f = V_{in}/R_1$ (to left, into ground)
- This current cannot come from op-amp input
 - so comes through R_2 (delivered from op-amp output)
 - voltage drop across R_2 is $I_f R_2 = V_{in} \times (R_2/R_1)$
 - so that output is higher than neg. input terminal by $V_{in} \times (R_2/R_1)$
 - $V_{out} = V_{in} + V_{in} \times (R_2/R_1) = V_{in} \times (1 + R_2/R_1)$
 - thus gain is $(1 + R_2/R_1)$, and is positive
- Current is sourced from op-amp output in this example

COMMUNICATION

Summing Amplifier



- Much like the inverting amplifier, but with two input voltages
 - inverting input still held at virtual ground
 - $-I_1$ and I_2 are added together to run through R_f
 - so we get the (inverted) sum: $V_{out} = -R_f \times (V_1/R_1 + V_2/R_2)$
 - if $R_2 = R_1$, we get a sum proportional to $(V_1 + V_2)$
- Can have any number of summing inputs
 - we'll make our D/A converter this way

10/22/2022

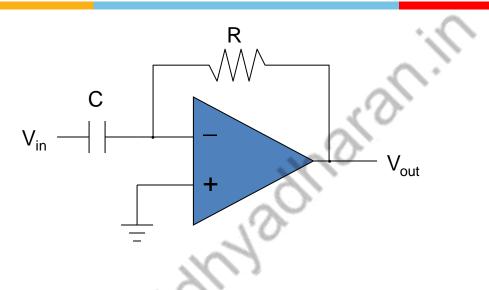
COMMUNICATION

Differencing Amplifier

• The non-inverting input is a simple voltage divider:

$$- V_{\rm node} = V^+ R_2 / (R_1 + R_2)$$

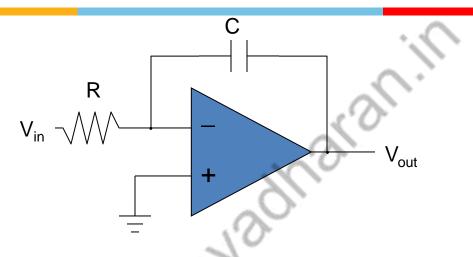
• So
$$I_{\rm f} = (V^- - V_{\rm node})/R_1$$


$$- V_{\text{out}} = V_{\text{node}} - I_f R_2 = V^+ (1 + R_2/R_1)(R_2/(R_1 + R_2)) - V^-(R_2/R_1)$$

- so
$$V_{\text{out}} = (R_2/R_1)(V^+ - V^-)$$

therefore we difference V⁺ and V⁻

10/22/2022


Differentiator (high-pass)

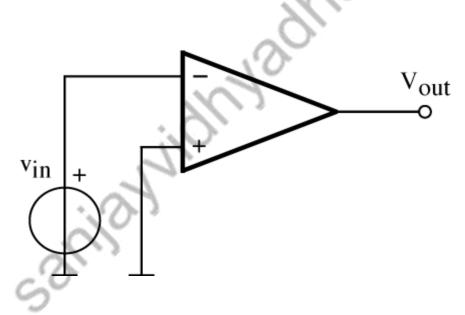
- For a capacitor, Q = CV, so $I_{cap} = dQ/dt = C \cdot dV/dt$
 - Thus $V_{out} = -I_{cap}R = -RC \cdot dV/dt$
- So we have a differentiator, or high-pass filter
 - if signal is $V_0 \sin \omega t$, $V_{out} = -V_0 RC \omega \cos \omega t$
 - the ω -dependence means higher frequencies amplified more

10/22/2022

Low-pass filter (integrator)

•
$$I_f = V_{in}/R$$
, so $C \cdot dV_{cap}/dt = V_{in}/R$

and since left side of capacitor is at virtual ground:


$$-dV_{out}/dt = V_{in}/RC$$

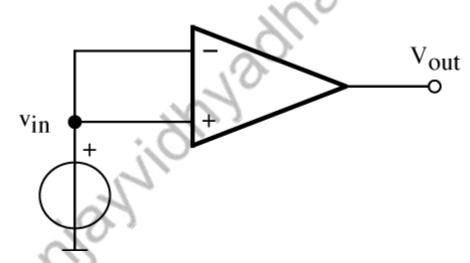
- so $V_{out} = -\frac{1}{RC} \int V_{in} dt$

and therefore we have an integrator (low pass)

10/22/2022

DC differential gain:

It is the open-loop voltage gain measured at DC with a small differential input signal. Typically Ad = 80 - 100 dB.



Analog Design for CMOS VLSI Systems Franco Maloberti

10/22/2022

Common mode gain:

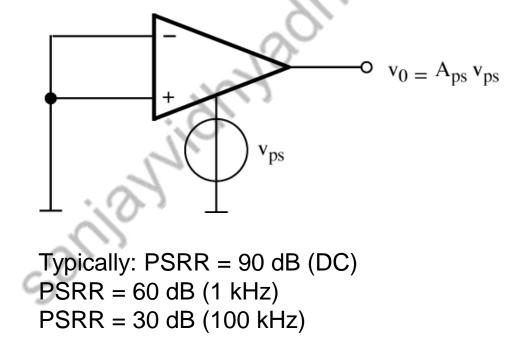
It is the open-loop voltage gain measured at DC with a small differential input signal. Typically Ad = 20 - 40 dB.

Common mode Rejection Ratio:

ELECTRONICS

It is defined as the ratio between the differential gain and the common mode gain. Typically CMRR = 40 - 80 dB.

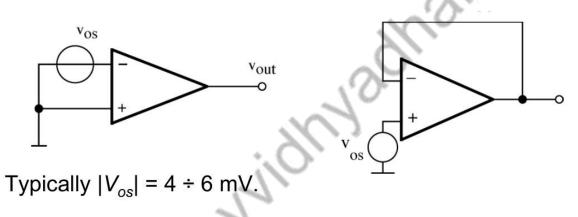
COMMUNICATION


10/22/2022

ELECTRICAL

Power supply rejection ratio:

If a small signal is applied in series with the positive (or negative) power supply, it is transferred to the output with a given gain A ps+ (or A ps-).


The ratios between differential gain and power supply gains furnish the two PSRRs.

10/22/2022

Input offset voltage:

In real circuits if the two input terminals are set at the same voltage the output saturates close to VDD or to VSS

Input common mode range:

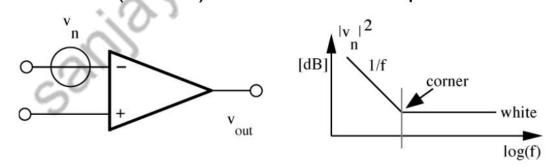
ELECTRONICS

It is the maximum range of the common-mode input voltage which do not produce a significant variation of the differential gain.

COMMUNICATION

10/22/2022

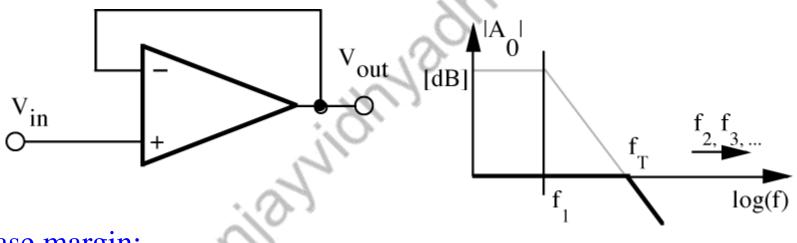
ELECTRICAL


Output voltage swing:

It is the swing of the output node without generating a defined amount of harmonic distortion.

Equivalent input noise:

The noise performances can be described in terms of an equivalent voltage source at the input of the op-amp.


Typically $v_n = 40 - 50 \text{ nV}/\sqrt{\text{Hz}}$ at 1 kHz, in a wide band (1 MHz) it results 10 - 50 µV RMS.

10/22/2022

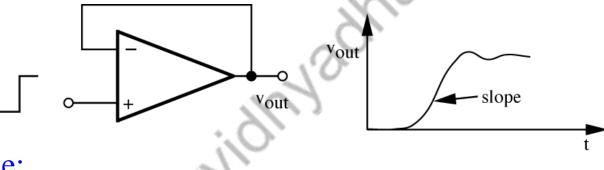
Unity gain frequency:

It is the frequency where the open-loop gain is zero. It is also the -3 dB bandwidth in unity-gain closed loop conditions. Typically, $f_T = 200$ MHz.

Phase margin:

ELECTRONICS

It is the phase shift of the small-signal differential gain measured at the unity gain frequency. A phase margin smaller than 60° causes ringing in the output response.


COMMUNICATION

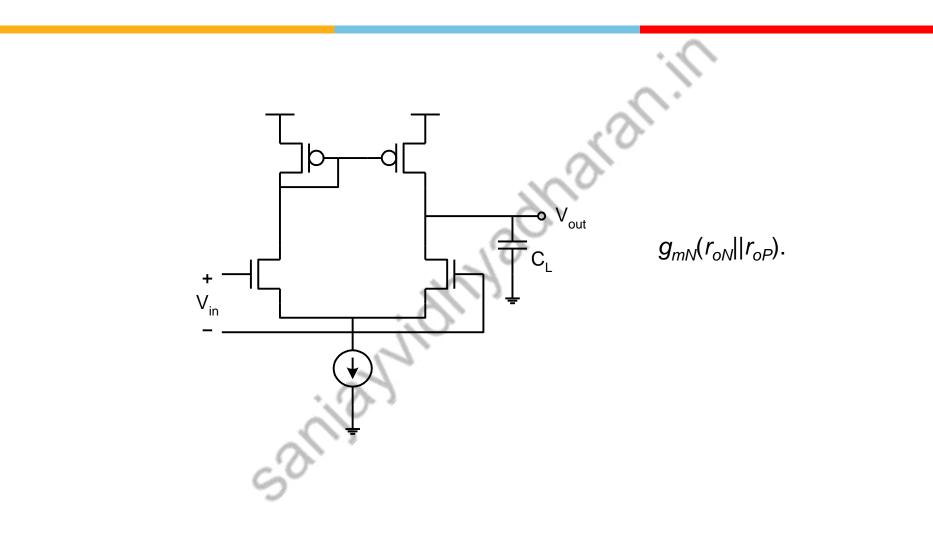
10/22/2022

ELECTRICAL

Slew rate:

It is the maximum slope of the output voltage. Usually it is measured in the buffer configuration. The positive slew rate can be different from the negative slew rate. Typically SR = $50 - 200 \text{ V/}\mu\text{s}$ (lower values for micropower operation).

Settling time:

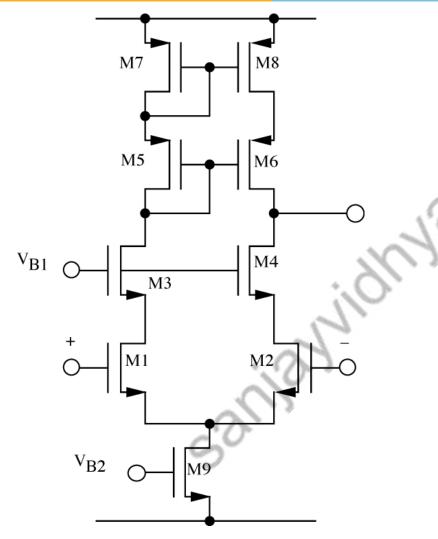

The settling time is the time required to settle the output within a given range (usually $\pm 0.1\%$) of the final value.

Power dissipation:

It depends on speed and bandwidth requirements. Typically, for 1.8 V supply, it is around 600 μ W.

10/22/2022

Single Stage Op-Amp

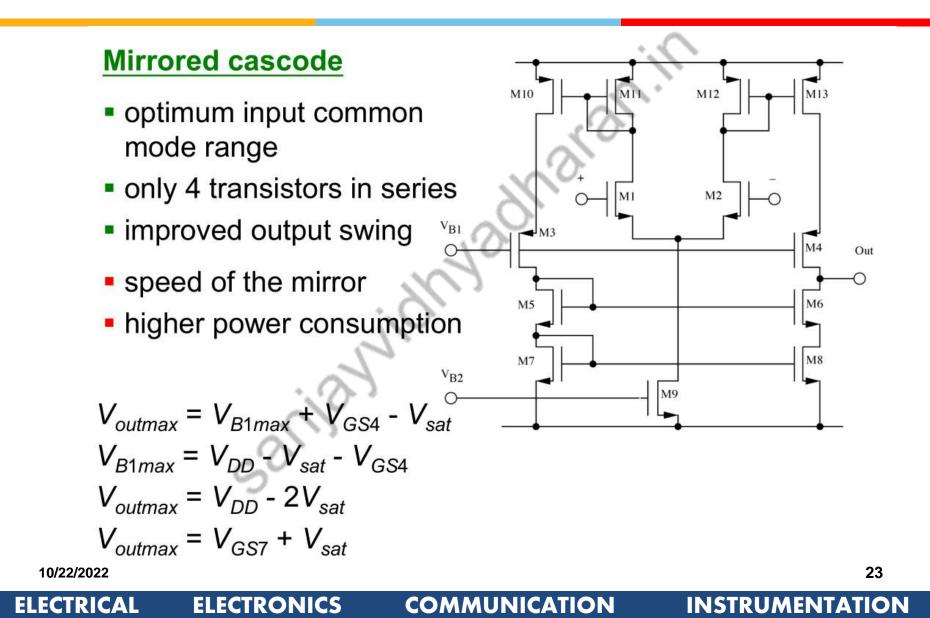


10/22/2022

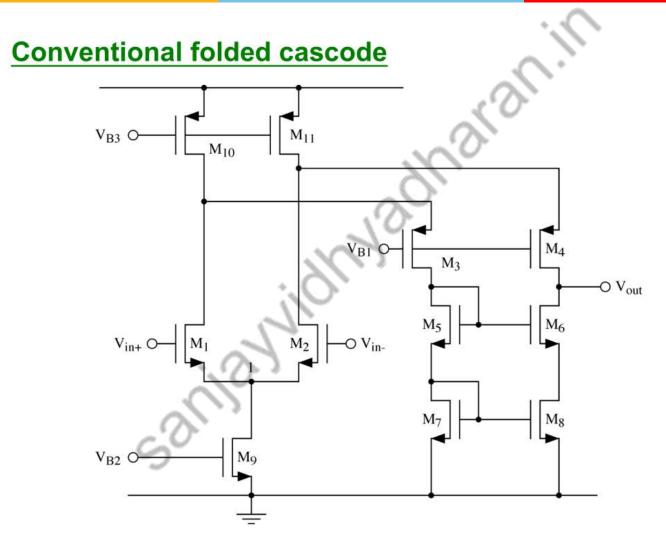
ELECTRONICS

COMMUNICATION

Single Stage Cascoded Amplifier

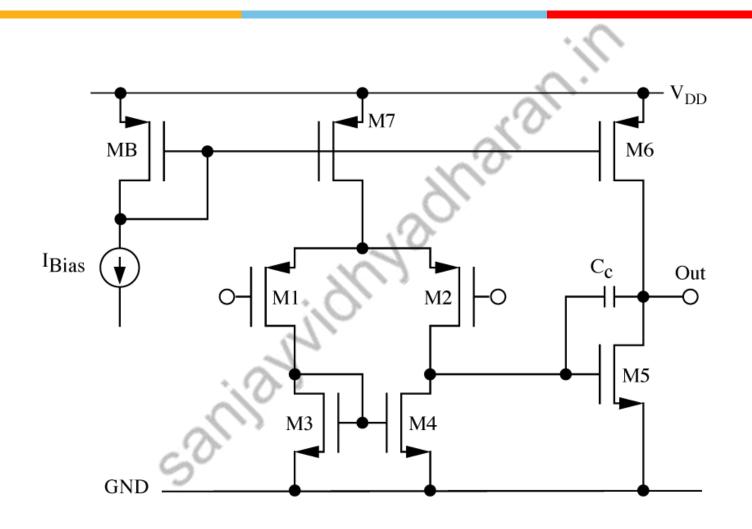

Telescopic cascode

- DC gain $A_0 \approx (g_m r_{ds})^2$
- low power consumption
- only one high impedance node: compensated with a capacitance load (if necessary)
- Iow output swing
- reference of the input close to the negative supply
- two bias lines (V_{B1}, V_{B2})
- 5 transistors in series


10/22/2022

COMMUNICATION

Single Stage Cascoded Amplifier



Single Stage Cascoded Amplifier

10/22/2022

Two-stage op-amp

10/22/2022

ELECTRICAL

25

ELECTRONICS

Two-stage op-amp

COMMUNICATION

Open-loop differential gain:

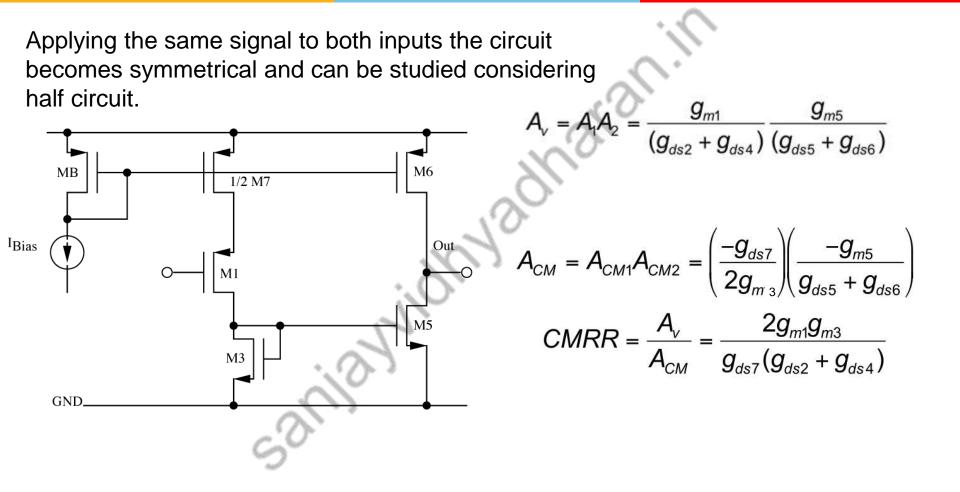
The gain is obtained by multiplying the gains of the two stages.

$$A_{v} = A_{1}A_{2} = \frac{g_{m1}}{(g_{ds2} + g_{ds4})} \frac{g_{m5}}{(g_{ds5} + g_{ds6})} =$$
$$= \frac{2\sqrt{2\mu_{n}\mu_{p}}C_{ox}}{(\lambda_{n} + \lambda_{p})^{2}} \frac{\sqrt{\left(\frac{W}{L}\right)_{1}}\sqrt{\left(\frac{W}{L}\right)_{5}}\left(\frac{W}{L}\right)_{B}}}{\sqrt{\left(\frac{W}{L}\right)_{6}}\sqrt{\left(\frac{W}{L}\right)_{7}}} \frac{1}{I_{Bias}}$$

 $\frac{1}{r_{eq}} = \frac{1}{r_1} + \frac{1}{r_2}$ $\frac{1}{r_{eq}} = g_{ds1} + g_{ds2}$ $r_{eq} = \frac{1}{g_{ds1} + g_{ds2}}$

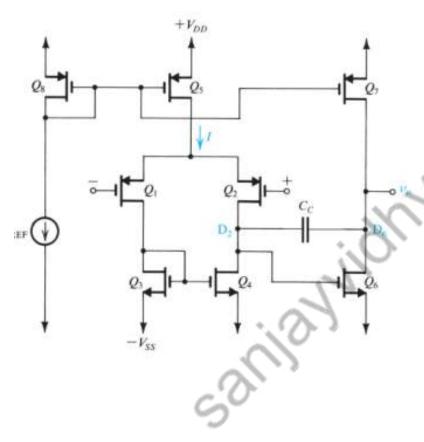
$$g_m = \sqrt{2\mu_n C_{ox} \left(\frac{W}{L}\right) I_D}$$

 $r_o \approx \frac{1}{\lambda I_D}$


INSTRUMENTATION

At low frequency the gain is inversely proportional to the bias current.

ELECTRONICS


10/22/2022

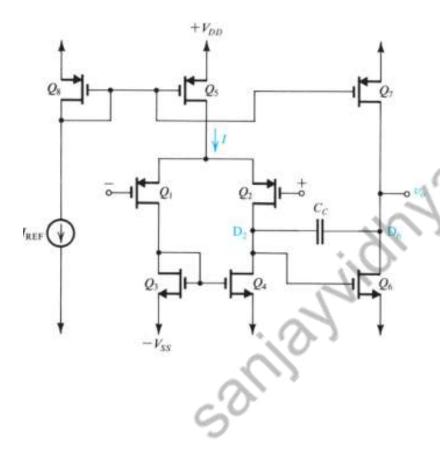
Two-stage op-amp

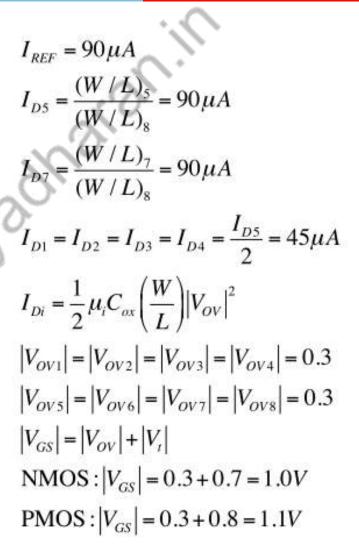
10/22/2022

COMMUNICATION

1200					
	Q1	Q2	Q3	Q4	
W/L in um	20/0.8	20/0.8	5/0.8	5/0.8	
X	Q5	Q6	Q7	Q8	
W/L in um	40/0.8	10/0.8	4/0.8	4/0.8	

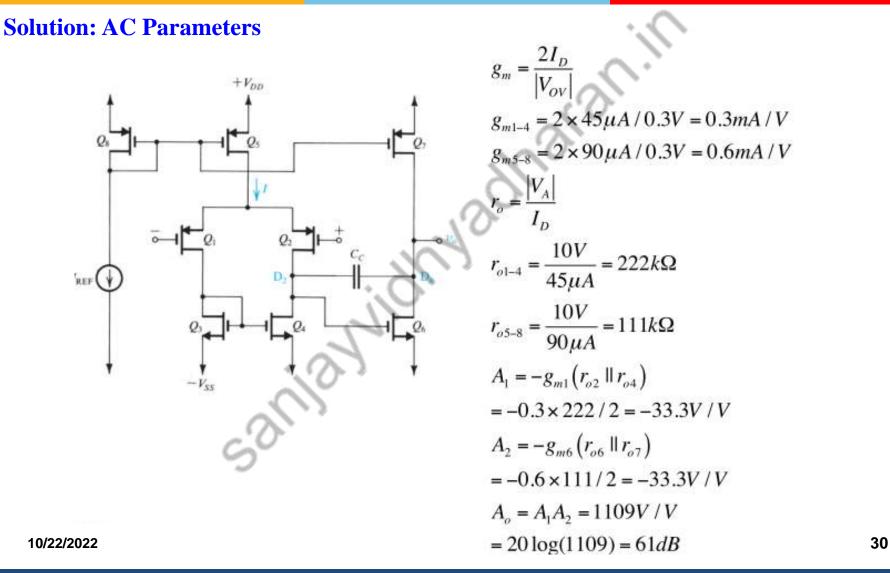
$$\begin{split} I_{\text{REF}} &= 90 \; \mu\text{A}, \; V_{\text{tn}} = 0.7 \text{V}, \; \; V_{\text{tp}} = -0.8 \text{V} \\ \mu_{\text{n}} C_{\text{ox}} &= 160 \; \mu\text{A}/\text{V}^2, \; \mu_{\text{p}} C_{\text{ox}} = 40 \; \mu\text{A}/\text{V}^2 \\ |V_{\text{A}}| &= 10 \text{V} \; \text{for all devices} \\ V_{\text{DD}} &= V_{\text{SS}} = 2.5 \text{V} \end{split}$$


Find I_D, |V_{OV}|, |V_{GS}|, g_m, r_o for all Q's, voltage gain, input common mode range, output voltage range.


10/22/2022

COMMUNICATION

Δ


Solution: DC Parameters

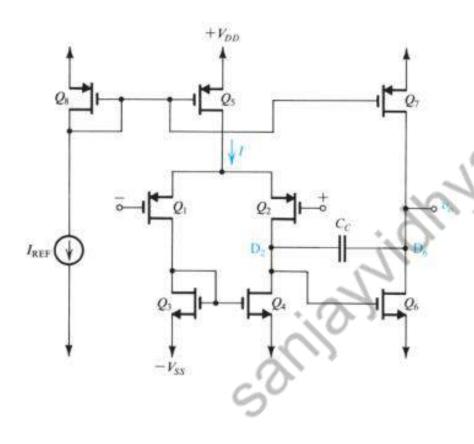
10/22/2022

COMMUNICATION

ELECTRICAL

ELECTRONICS

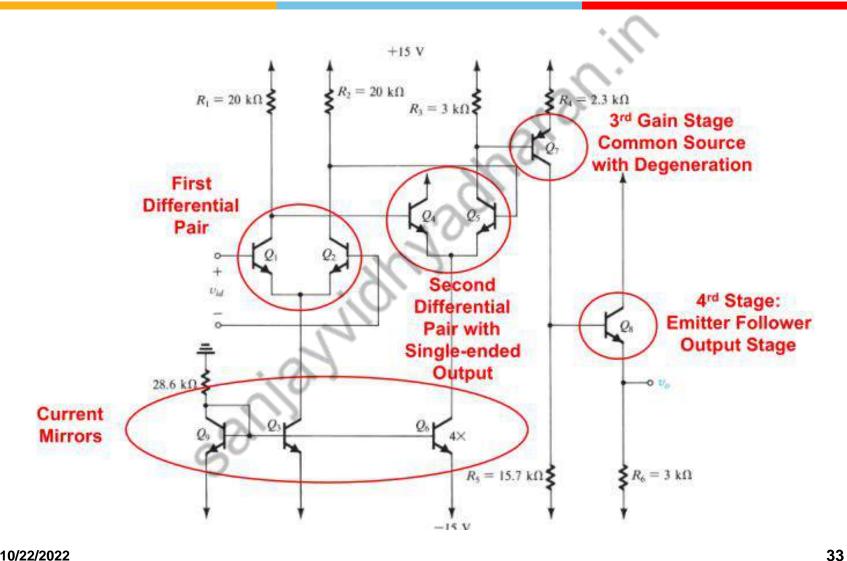
Solution: Input Common-Mode Ranges


Input common-mode voltage range: Maximum: Q₅ near edge of saturation $|V_{DS5}| = |V_{OV5}| = 0.3V$ $v_{icmmax} = 2.5 - |V_{OV5}| - |V_{GS5}|$ = 2.5 - 0.3 - 1.1 = 1.1V

Minimum: Q1 near edge of saturation

$$\begin{aligned} v_{D1} &= -V_{SS} + V_{GS3} = -2.5 + 1 = -1.5V \\ \left| v_{DS1} \right| &= \left| v_{GS1} \right| - \left| v_{tp} \right| \\ -v_{DS1} &= -v_{GS1} - 0.8 \\ -v_{D1} &= -v_{G1} - 0.8 \\ v_{icmmin} &= v_{G1} = v_{D1} - 0.8 = -2.3V \end{aligned}$$

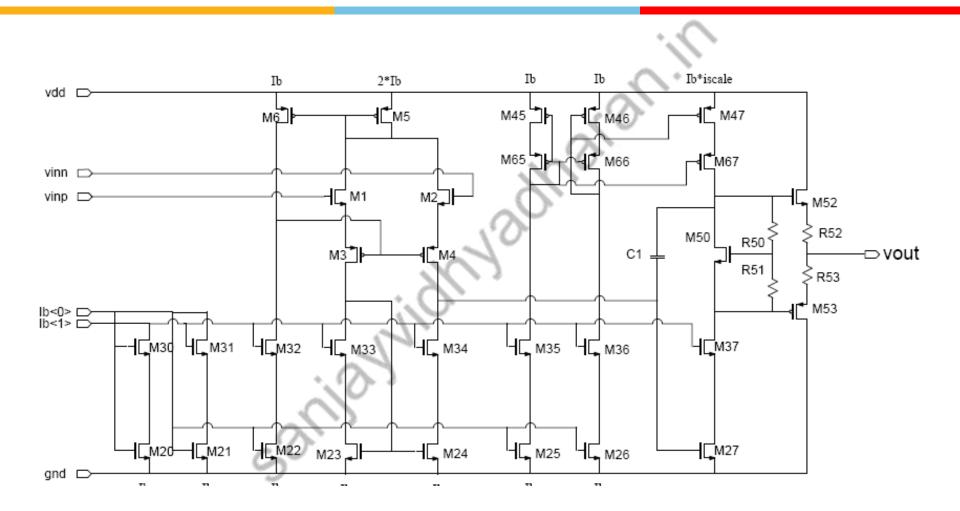
10/22/2022


Solution: Output Ranges

Output voltage range: Maximum: Q₇ near edge of saturation $|V_{OV7}| = 0.3V$ $v_{omax} = 2.5 - |V_{OV7}| = 2.2V$ Minimum: Q₆ near edge of saturation $v_{omin} = -V_{SS} + |V_{OV6}| = -2.5 + 0.3 = -2.2V$

10/22/2022

A Four-Stage Bipolar Op-Amp


COMMUNICATION

10/22/2022

ELECTRICAL

ELECTRONICS

CMOS Implementation of 741 Op-Amp

10/22/2022

ELECTRICAL

ELECTRONICS

COMMUNICATION

INSTRUMENTATION

10/22/2022

COMMUNICATION