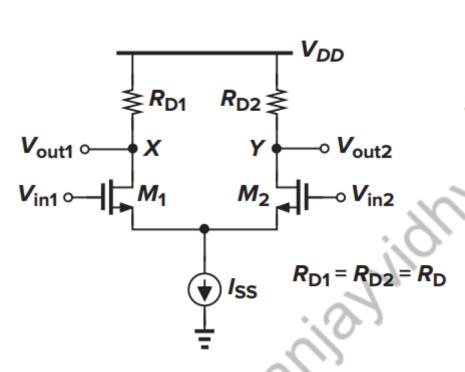
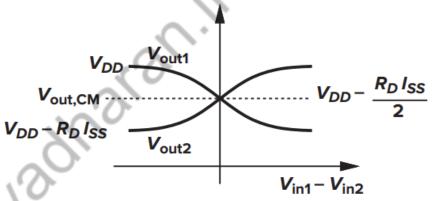


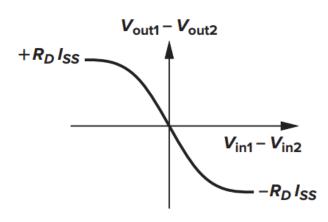
Analog IC Design: 2022-23 Lecture 5 Differential Amplifiers Part-2 By Dr. Sanjay Vidhyadharan

ELECTRICAL

Basic MOS Differential Pair





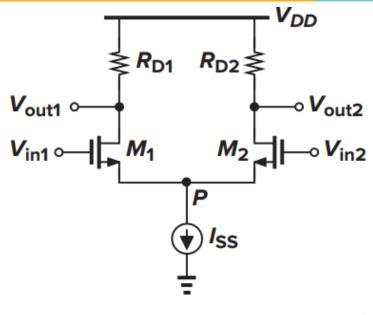


"Current stealing "phenomenon

8/20/2022

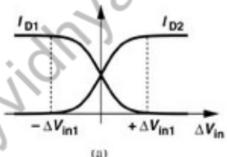
COMMUNICATION

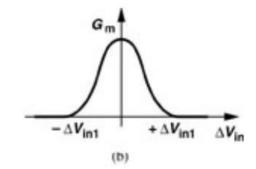
MOS Differential Pair



Differential Transconductance Gain vs. Input Voltage

$$\frac{\partial \Delta I_{D}}{\partial \Delta V_{in}} = G_{m} = \frac{\mu_{n} C_{ox}}{2} \frac{W}{L} \frac{\frac{4I_{SS}}{\mu_{n} C_{ox} W / L} - 2(V_{in1} - V_{in2})^{2}}{\sqrt{\frac{4I_{SS}}{\mu_{n} C_{ox} \frac{W}{L}} - (V_{in1} - V_{in2})^{2}}}$$



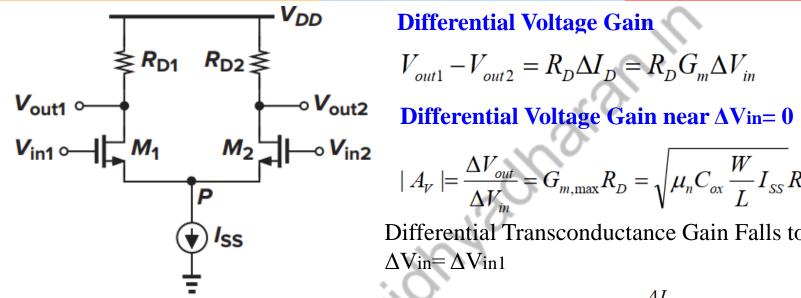


Maximum Differential Transconductance Gain Occurs at $\Delta V_{in}=0$

$$G_{m,\max} = \sqrt{\mu_n C_{ox} \left(\frac{W}{L}\right) I_{SS}}$$

 $g_m = \sqrt{2\mu_n C_{ox} \left(\frac{W}{L}\right) I_D}$

MOS Differential Pair

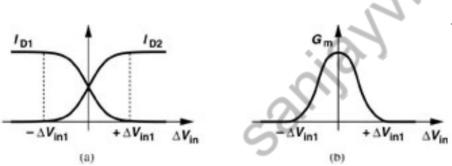


Differential Voltage Gain

$$V_{out1} - V_{out2} = R_D \Delta I_D = R_D G_m \Delta V_{in}$$

$$|A_{V}| = \frac{\Delta V_{out}}{\Delta V_{in}} = G_{m,\text{max}} R_{D} = \sqrt{\mu_{n} C_{ox} \frac{W}{L} I_{SS}} R_{D}$$

Differential Transconductance Gain Falls to Zero at $\Delta V_{in} = \Delta V_{in1}$



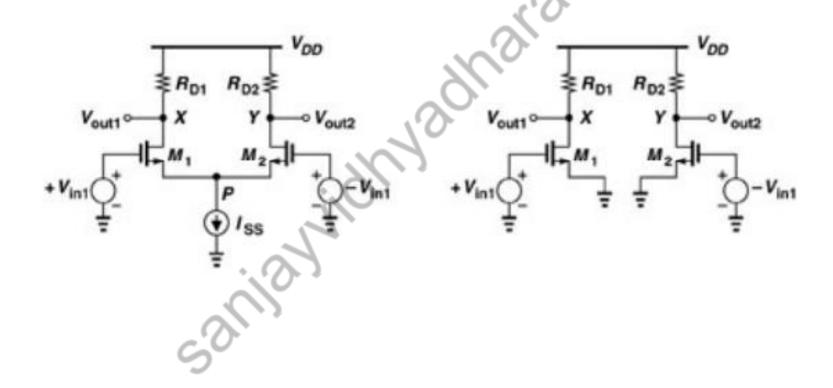
$$\frac{\partial \Delta I_{D}}{\partial \Delta V_{in}} = G_{m} = \frac{\mu_{n} C_{ox}}{2} \frac{W}{L} \frac{\frac{4I_{SS}}{\mu_{n} C_{ox} W / L} - 2(V_{in1} - V_{in2})^{2}}{\sqrt{\frac{4I_{SS}}{\mu_{n} C_{ox}} \frac{W}{L} - (V_{in1} - V_{in2})^{2}}}$$

$$\Delta V_{in1} = \sqrt{\frac{2I_{SS}}{\mu_n C_{ox} \frac{W}{L}}}$$

ΔVin= ΔVin1 is the maximum differential input that the amplifier can "handle"

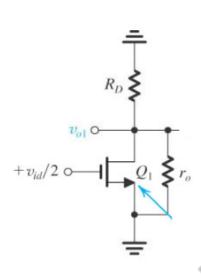
The "Virtual Ground" Concept

The "Half-Circuit" Concept



Differential Mode Response

Differential-mode small-signal half-circuit



CS amplifier for input difference!

$$\frac{v_{o1}}{v_{id}/2} = -g_m(R_D \parallel r_o)$$

For the total circuit

$$v_{od} = v_{o1} - v_{o2}$$

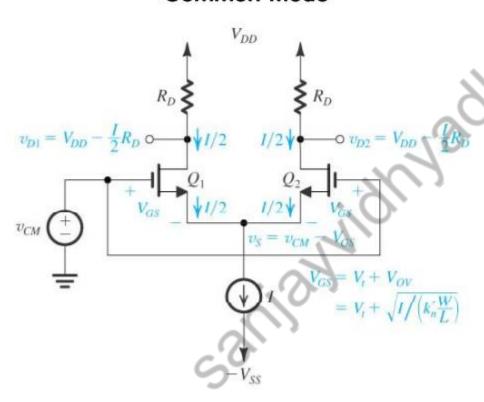
But
$$v_{o2} = -v_{o1}$$

$$\therefore v_{od} = 2v_{o1}$$

$$A_{d} = \frac{v_{od}}{v_{id}} = \frac{2v_{o1}}{v_{id}} = -g_{m}(R_{D} || r_{o})$$

MOS Differential Pair

Common-Mode



For identical Q₁ and Q₂

$$i_{D1}=i_{D2}=\frac{I}{2}$$

$$v_{D1} = v_{D2} = V_{DD} - \frac{I}{2} R_{D}$$

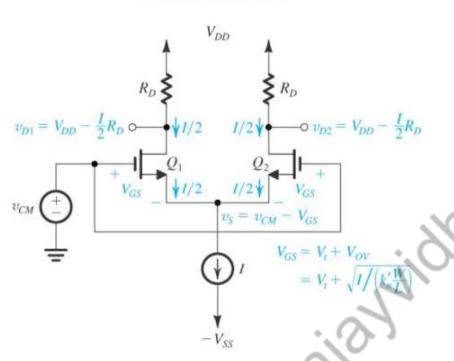
$$\therefore \upsilon_{D1} - \upsilon_{D2} = 0$$

==> No CM output

CMRR = ????

MOS Differential Pair

Common-Mode



$$v_{DS} \ge v_{GS} - V_t$$

$$(V_{DD} - \frac{I}{2}R_D) - (V_{CM} - v_{GS}) \ge v_{GS} - V_t$$

$$\therefore V_{DD} - \frac{I}{2}R_D + V_t \ge V_{CM}$$

$$V_{CM,\text{max}} = V_{DD} - \frac{I}{2}R_D + V_t$$

How to Maximise ?

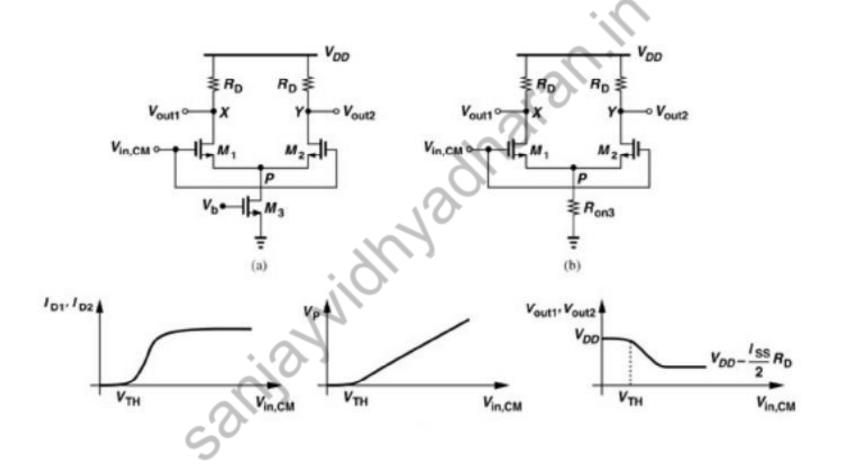
If a voltage V_{CS} is needed across the current source, then

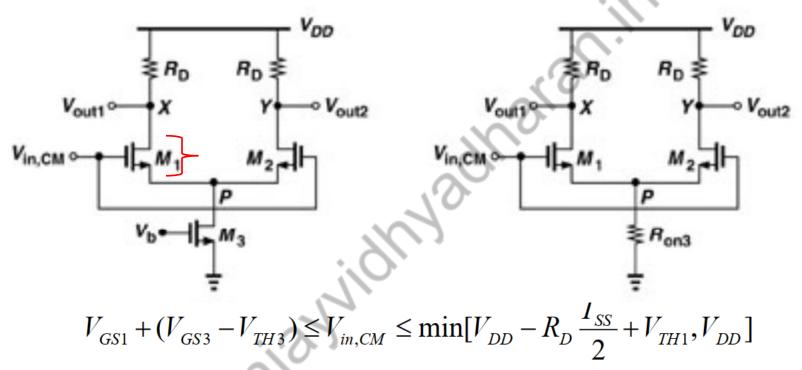
$$V_{CMmin} = -V_{SS} + V_{CS} + V_t + V_{OV}$$

How to Minimise?

8/20/2022

8

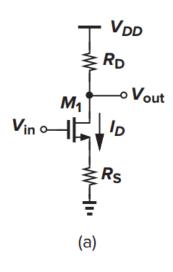


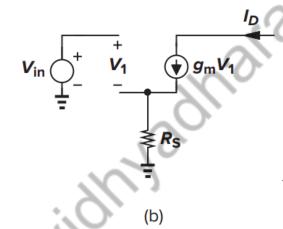


Input common-mode range (ICMR) The input common-mode range is the range of common-mode voltages over which the differential amplifier continues to sense and amplify the difference signal with the same gain.

Typically, the *ICMR* is defined by the common-mode voltage range over which all MOSFETs remain in the saturation region

CS stage with Source Degeneration.



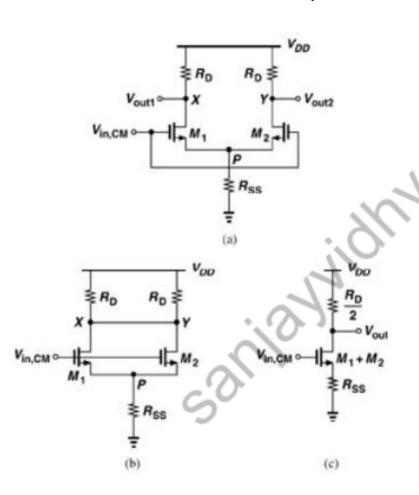


$$v_{in} = v_{gs+} i_d R_s$$
 $v_{in} = v_{gs+} g_m v_{gs} R_s$
 $v_{in} = v_{gs} (1 + g_m R_s)$
 $v_{out} = -i_d R_D$
 $v_{out} = -v_{gs} g_m R_D$

$$Gain = \frac{-g_m R_D}{1 + g_m R_S}$$

$$Gain = \frac{-R_D}{\frac{1}{g_m} + R_S}$$

Single-ended Common-Mode Response of a symmetric amplifier



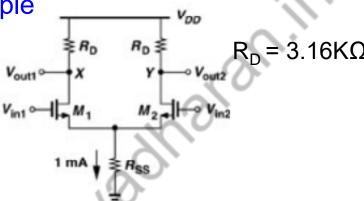
As V in, CM changes so does VP. As a result, ID currents change and Vx and Vy change. Vx-Vy continues to be zero

$$A_{V,CM} = \frac{V_{out}}{V_{in,CM}} = \frac{V_X}{V_{in,CM}} = \frac{V_Y}{V_{in,CM}}$$
$$= -\frac{R_D/2}{1/(2g_m) + R_{SS}}$$

How to Minimize A_{CM} ?

Example

"Resistor current source" example



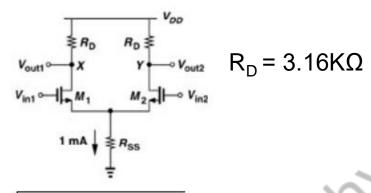
- Example: Let V_{DD}=3V, (W/L)₁=(W/L)₂=25/0.5
- $\mu_n C_{OX} = 50 \mu A/V^2$, $V_{TH} = 0.6 V$, $\lambda = 0$, $\gamma = 0$, $R_{SS} = 500 \Omega$
- Because I_{D1}=I_{D2}=0.5mA, we have:

$$V_{GS1} = V_{GS2} = \sqrt{\frac{2I_{D1}}{\mu_n C_{OX} \frac{W}{\tau}}} + V_{TH} = 1.23V$$

- Also: V_S=I_{ss}R_{SS}=0.5V
- Bias voltage at gates V_{in.CM}=V_{GS1}+V_S=1.73V

Example

"Resistor current source" example



$$g_m = \sqrt{2\mu_n C_{OX} \frac{W}{L} I_{D1}} = \frac{1}{632\Omega}$$

$$g_m = \sqrt{2\mu_n C_{OX} \frac{W}{L} I_{D1}} = \frac{1}{632\Omega}$$
 $g_m = \sqrt{(2*50*10^{-6}*\frac{25}{0.5}*0.5*10^{-3})}$

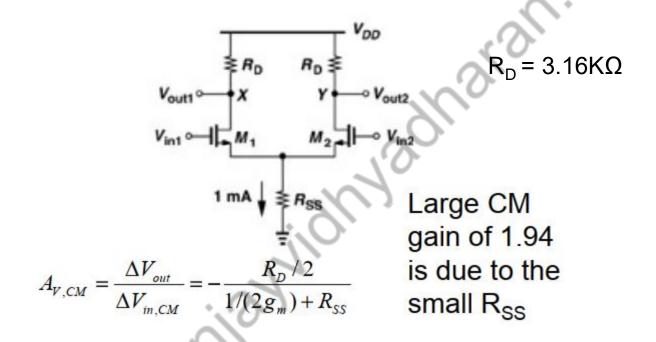
Hence differential voltage gain = $g_m R_D = 5$

$$V_{out1} = V_{out2} = V_{DD} - I_D R_D = 1.42 \text{ V} > V_{GS} - V_{TH}$$

 $V_{GS} - V_{TH} = 1.23 - 0.6 = 0.63V$ (the overdrive) What is max CM Voltage?

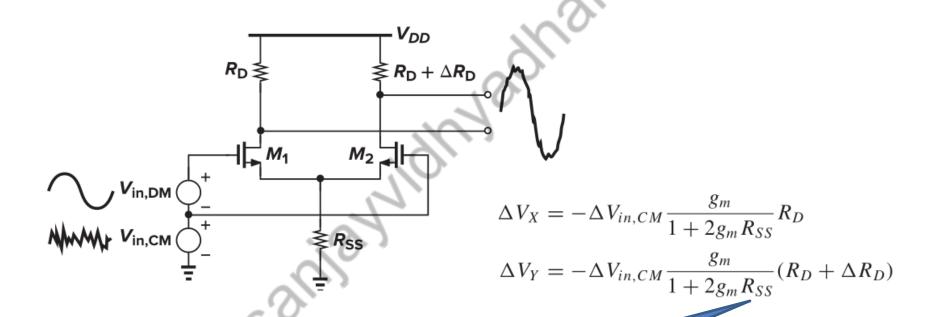
Example

"Resistor current source" example



CMRR = 5 / 1.94 = 51.7

Common-mode response in the presence of resistor mismatch.

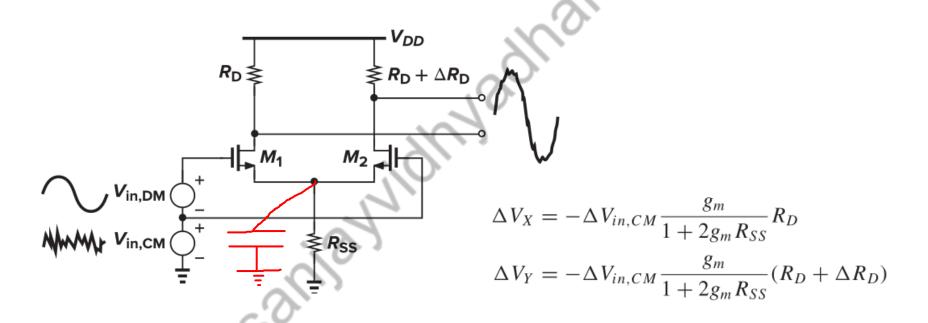


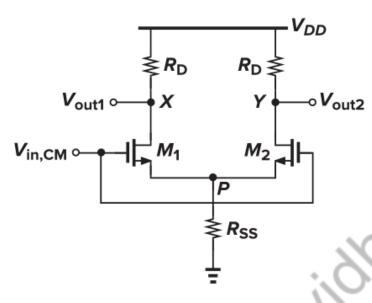
R_{ss} should be large for Noise immunity.

8/20/2022

16

CM response with finite tail capacitance.





$$\frac{1}{\Xi}$$

$$V_X = -g_{m1}(V_{in,CM} - V_P)R_D$$

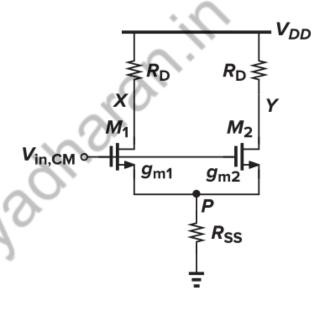
$$= \frac{-g_{m1}}{(g_{m1} + g_{m2})R_{SS} + 1}R_DV_{in,CM}$$

$$V_Y = -g_{m2}(V_{in,CM} - V_P)R_D$$

$$= \frac{-g_{m2}}{(g_{m1} + g_{m2})R_{SS} + 1}R_DV_{in,CM}$$

$$A = R$$

$$V_X - V_Y = -\frac{g_{m1} - g_{m2}}{(g_{m1} + g_{m2})R_{SS} + 1} R_D V_{in,CM} \qquad A_{CM-DM} = -\frac{\Delta g_m R_D}{(g_{m1} + g_{m2})R_{SS} + 1}$$



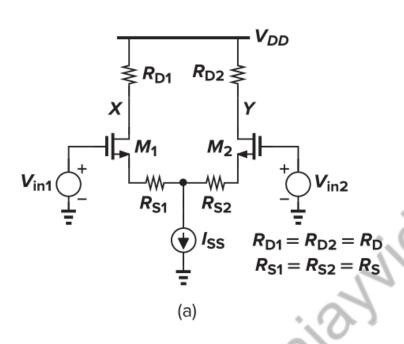
$$V_Y = -g_{m2}(V_{in,CM} - V_P)R_D$$

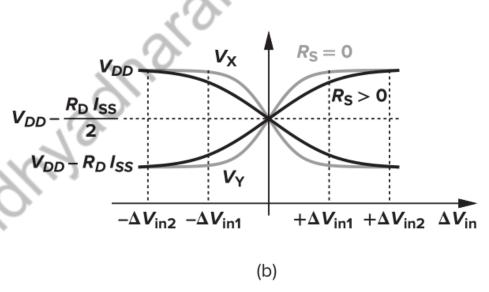
= $\frac{-g_{m2}}{(g_{m1} + g_{m2})R_{SS} + 1}R_DV_{in,CM}$

$$A_{CM-DM} = -\frac{\Delta g_m R_D}{(g_{m1} + g_{m2})R_{SS} + 1}$$

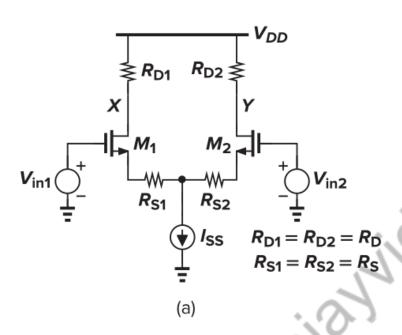
A CM-DM denotes common-mode to differential-mode conversion

Degenerated Differential Pairs





Degenerated Differential Pairs



$$V_{in1} - V_{GS1} - R_S I_{SS} = V_{in2} - V_{TH}$$

$$V_{in1} - V_{in2} = V_{GS1} - V_{TH} + R_S I_{SS}$$

$$= \sqrt{\frac{2I_{SS}}{\mu_n C_{ox} \frac{W}{L}}} + R_S I_{SS}$$

$$\Delta V_{in2} - \Delta V_{in1} = R_S I_{SS}$$

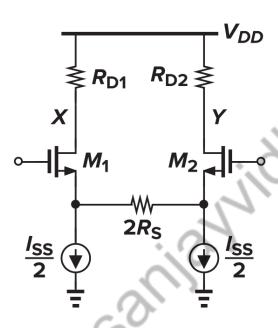
Guess the Drawback

$$|A_v| = \frac{R_D}{\frac{1}{g_m} + R_S}$$
 Trades gain for linearity
Each resistor sustains a v

Each resistor sustains a voltage drop of R_SI_{SS}/2

Degenerated Differential Pairs

Degenerated differential pair with split tail current source.



Thank you