

INSTRUMENTATION

VLSI Design : 2022-23 Lecture 4 CMOS Inverter Static Characteristics

By Dr. Sanjay Vidhyadharan

ELECTRONICS

ELECTRICAL

COMMUNICATION

V $_{IH}$, V $_{IL}$ are operational points of inverter where dVout /dVin = -1

8/13/2022

ELECTRICAL

MOSFET Current Equations

COMMUNICATION

ELECTRICAL

ELECTRONICS

INSTRUMENTATION

8/13/2022

INSTRUMENTATION

8/13/2022

8/13/2022

ELECTRICAL ELECTRONICS

COMMUNICATION

INSTRUMENT ΑΤΙΟΝ

8/13/2022

ELECTRONICS

COMMUNICATION

8/13/2022

ELECTRONICS

COMMUNICATION

Enhancement-Load nMOS Inverter

Relatively simple fabrication process
 V_{OH} level is limited to V_{DD} - V_T

Two separate power supply
 V_{OH} = V_{DD}

High Static Power

8/13/2022

Depletion-Load nMOS Inverter

Depletion-type nMOS load is more complicated & requires additional processing steps

V_{OH} = V_{DD}
Single power supply

8/13/2022

Depletion-Load nMOS Inverter

ELECTRICAL

ELECTRONICS

COMMUNICATION

The CMOS Inverter

Assumed infinite off-resistance for $V_{GS} < V_{TH}$ and finite on-resistance for $V_{GS} > V_{TH}$

COMMUNICATION

ELECTRONICS

8/13/2022

ELECTRICAL

INSTRUMENTATION

Important properties of static CMOS

- Rail-to-Rail O/p : The high and low output levels equal V_{DD} and GND, respectively. This results in high noise margins.
- Ratioless: The logic levels are not dependent upon the relative device sizes, so that the transistors can be minimum size.
- > In steady state, there always exists a path with finite resistance between the output and either V_{DD} or GND.
- ➤ The input resistance of the CMOS inverter is extremely high, the steady-state input current is nearly zero.
- A single inverter can theoretically drive an infinite number of gates (or have an infinite fanout) and still be functionally operational. However, increasing the fan-out also increases the propagation delay.
- No direct path exists between the supply and ground rails under steady-state operating conditions (this is, when the input and outputs remain constant). The absence of current flow (ignoring leakage currents) means that the gate does not consume any static power.
 8/13/2022
 14

ELECTRICAL ELECTRONICS COMMUNICATION IN

The PMOS Load Line

COMMUNICATION

ELECTRICAL

ELECTRONICS

^{8/13/2022}

CMOS Inverter Load Characteristic

0.25um, W/L_n = 1.5, W/L_p = 4.5, V_{DD} = 2.5V, V_{Tn} = 0.4V, V_{Tp} = -0.4V

0/13/2022

CMOS Inverter Load Characteristic

0.25um, W/L_n = 1.5, W/L_p = 4.5, V_{DD} = 2.5V, V_{Tn} = 0.4V, V_{Tp} = -0.4V

8/13/2022

CMOS Inverter VTC

The VTC of the inverter hence exhibits a very narrow transition zone. This results from the high gain during the switching transient, when both NMOS and PMOS are simultaneously on, and in saturation. In that operation region, a small change in the input voltage results in a large output variation.

COMMUNICATION

8/13/2022

ELECTRICAL

ELECTRONICS

The Switching Threshold, V_M , is the point where $V_{in} = V_{out}$. This can be calculated:

» Graphically, at the intersection of the VTC with $V_{in} = V_{out}$

COMMUNICATION

8/13/2022

ELECTRICAL

ELECTRONICS

INSTRUMENTATION

 \Box Let's analytically compute V_M .

» Remember, the saturation current for a MOSFET is given by:

$$I_{DS} = \frac{k}{2} \left(V_{GS} - V_T \right)^2 \left(1 + \lambda V_{DS} \right)$$

» Lets assume $\lambda = 0$ and we'll equate the two currents:

$$I_{D} = \frac{k_{n}}{2} \left(V_{GSn} - V_{Tn} \right)^{2} = \frac{k_{p}}{2} \left(V_{SGp} - V_{Tp} \right)^{2}$$

» Now we'll substitute:

$$V_{GSn} = V_{in} = V_M$$

$$V_{SGp} = V_{DD} - V_{in} = V_{DD} - V_M$$

» And we'll arrive at:

ELECTRONICS

$$V_{M} = \frac{V_{Tn} + r(V_{DD} - V_{Tp})}{1 + r}$$

$$r \triangleq \sqrt{\frac{k_{p}}{k_{n}}}$$

COMMUNICATION

INSTRUMEN

8/13/2022

□ A symmetric *VTC* ($V_M = V_{DD}/2$) is often desired. In this case:

$$V_{M} = \frac{V_{DD}}{2} = \frac{V_{Tn} + r\left(V_{DD} - V_{Tp}\right)}{1 + r} \longrightarrow \left(\frac{W}{L}\right)_{p} = \frac{\mu_{n}}{\mu_{p}}\left(\frac{W}{L}\right)_{n}$$

Generally, the same length (*L_{min}*) is taken for all transistors in digital circuits, and so for a symmetric *VTC*:

COMMUNICATION

$$\frac{\left(\frac{W}{L}\right)_n}{\left(\frac{W}{L}\right)_p} = \frac{\mu_p}{\mu_n} \approx \frac{230 \text{ cm}^2/\text{V}\cdot\text{s}}{580 \text{ cm}^2/\text{V}\cdot\text{s}}$$
$$\left(\frac{W}{L}\right)_p \approx 2.5 \left(\frac{W}{L}\right)_n$$

ELECTRONICS

8/13/2022

ELECTRICAL

8/13/2022

ELECTRONICS

For Short Channel Devices

$$k_n V_{DSATn} \left(V_M - V_{Tn} - \frac{V_{DSATn}}{2} \right) + k_p V_{DSATp} \left(V_M - V_{DD} - V_{Tp} - \frac{V_{DSATp}}{2} \right) = 0$$

$$V_{M} = \frac{\left(V_{Tn} + \frac{V_{DSATn}}{2}\right) + r\left(V_{DD} + V_{Tp} + \frac{V_{DSATp}}{2}\right)}{1 + r}$$
$$r = \frac{k_{p}V_{DSATp}}{k_{n}V_{DSATn}} = \frac{\upsilon_{satp}W_{p}}{\upsilon_{satn}W_{n}} \qquad r = \frac{\beta_{P}V_{DSATp}}{\beta_{n}V_{DSATn}} = \frac{\upsilon_{satp}W_{p}}{\upsilon_{satn}W_{n}} \qquad r \approx \beta_{p} / \beta_{n}$$

1 1 1

 $v_{sat} = \begin{cases} 8 \times 10^{\circ} \text{ cm/s for electrons in Si} \\ 6 \times 10^{6} \text{ cm/s for holes in Si} \end{cases}$

COMMUNICATION

8/13/2022

ELECTRONICS

23

INSTRUMENTATION

$$r \approx \beta_p / \beta_n$$

If $\beta_p / \beta_n \neq 1$

• •

Then its called skewed inverter

HI-Skewed $\beta_p / \beta_n > 1$

LO-Skewed $\beta_p / \beta_n < 1$

8/13/2022

COMMUNICATION

Increasing the width of the PMOS moves V_{M} towards V_{DD} Increasing the width of the NMOS moves V_M towards GND

COMMUNICATION

8/13/2022

ELECTRICAL

ELECTRONICS

8/13/2022

ELECTRONICS

COMMUNICATION

For V_{IL}

COMMUNICATION

8/13/2022

ELECTRICAL

ELECTRONICS

INSTRUMENTATION

1

For V_{IH}

$$V_{in} = V_{IH} \quad \& \quad \frac{dV_{out}}{dV_{in}} = -1$$

$$k_p (V_{in} - V_{DD} - V_{T0,p}) = k_n \left[(V_{in} - V_{T0,n}) \frac{dV_{out}}{dV_{in}} + (V_{out}) - (V_{out}) \frac{dV_{out}}{dV_{in}} \right]$$

$$k_p (V_{IH} - V_{DD} - V_{T0,p}) = k_n \left[(V_{IH} - V_{T0,n})(-1) + (V_{out}) - (V_{out})(-1) \right]$$

$$k_p (V_{IH} - V_{DD} - V_{T0,p}) = k_n (V_{T0,n} - V_{IH} + 2V_{out})$$

$$\frac{k_n}{k_p} (V_{T0,n} + 2V_{out}) = \frac{k_n}{k_p} V_{IH} + V_{IH} - V_{DD} - V_{T0,p}$$

$$\frac{k_n}{k_p} (V_{T0,n} + 2V_{out}) = \left(1 + \frac{k_n}{k_p} \right) V_{IH} - V_{DD} - V_{T0,p}$$

COMMUNICATION

$$V_{IH} = \frac{V_{DD} + V_{T0,p} + K_R (2V_{out} + V_{T0,n})}{1 + K_R}$$

ELECTRONICS

8/13/2022

ELECTRICAL

Causes for High Static Power Consumption Effect of Decreasing V_{DD} on Delay Propagation Delay (tpd) = $\frac{K_1 C_L}{I_D} = \frac{K_2 C_L}{(V_{DD} - V_{th})^2}$ Effect of Decreasing V_{th} on Power

- Intel estimated leakage power consumption at more than 50W for a 100nm technology node.
- Leakage depends strongly on a Threshold voltage (V_{th}) of the transistor

COMMUNICATION

8/13/2022

ELECTRICAL

ELECTRONICS

8/13/2022

ELECTRICAL

ELECTRONICS

COMMUNICATION

INSTRUMENTATION

> Reducing Static Loss

- Device Level Techniques Tunnel Field Effect Transistors CNFETs
- Circuit Level Techniques when using CMOS

Fig. 12 Variation of threshold voltage with gate width in the case of trench isolated buried channel P-MOSFET showing the anomalous behavior [27].

[3] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, "Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits," Proceedings of the IEEE, vol. 91, no. 2, pp. 305–327, Feb. 2003.

ELECTRICAL

ELECTRONICS

COMMUNICATION

8/13/2้022

ELECTRICAL

ELECTRONICS

COMMUNICATION

Challenges of Multi-V_{DD} Design

ELECTRONICS

- The additional supply voltage V_{DD} needs to be created on-chip by a dc to dc converter.
- > Area overhead, and in power consumption for the converter.
- > Level-shifters are required between different supply domains.

COMMUNICATION

> Multiple Routing

ELECTRICAL

Non-critical path runs with increased threshold voltage

[5] M. Pedram and J.M. Rabaey, "Power aware design Methodologies," [Online]. Available: https://www.springer.com/gp/book/9781402071522

8/13/2022

ELECTRICAL

ELECTRONICS

COMMUNICATION

INSTRUMENTATION

Challenges of Multi-V_{th} **Design**

> ADDITIONAL MASKS

ELECTRONICS

8/13/2022

ELECTRICAL

> FOR EACH SUCH OPTION, THE DESIGN LIBRARY MUST BE ELECTRICALLY CHARACTERIZED, MODELED FOR ALL DESIGN TOOLS

COMMUNICATION

INSTRUMENTATION

Thank you

8/13/2022