VLSI Design : 2021-22
Lecture 19
CMOQOS, Testing

By Dr. Sanjay Vidhyadharan
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Testing

» Testing Is one of the most expensive parts of chips
Logic verification accounts for > 50% of design effort
for many chips
Debug time after fabrication has-enormous cost
Shipping defective parts can sink a company

» Example: Intel FDIV bug
— Logic error not-caught until > 1M units shipped
— Recall cost $450M (1)



Pre-fabrication Testing / Logic Verification

Does the chip simulate correctly?

— Usually done at HDL level

— Verification engineers write test bench for HDL
» Can’t test all cases

 Look for corner cases

« Ex: 32-bit adder

— Test all combinations of corner cases as inputs:
«0, 1,2, 231-1, -1, -231, a few random numbers

« Good tests require ingenuity /S S/
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Pre-fabrication Testing / Logic Verification

The Corner analysis simulates your design with the minimum and maximum value of each
parameter. But it does not reproduce the mismatching between devices!

*Corner Analysis

*CMOS thickness: wp, ws, wo, wz. = A
*Resistor value: wp, ws. Do tariantes e
«Capacitor value: wp, ws.
*Temperatures: (typ.)-20 to 85°C Y
*Voltage supply: depend on your supply.source, etc. R PR
pAaramn scs » g
bip.scs » trn
cap.scs » Wp WS
dio.scs L4 trin
ws = worst speed e e
*Wp = worst power o B
*wo = worst one (Fast NMOS & Slow ode eraune
PMOS)
*wz = worst zero (Slow-NMOS & Fast 8 _iniThy. veori| v
PMOS) : -

Typical configuration for a corner simulation



Pre-fabrication Testing / Logic Verification

Monte Carlo analysis is a statistical way to analyze a circuit in VLSI.

16nm 17nm 18nm

On each simulation run, it calculates every parameter randomly according to a
statistical distribution model. The drawback of Monte Carlo is the large number of
simulations required to have acceptable results. It should be at least 250 to have a
significant sample




Design for Testability

Observability & Controllability

» Observability: ease of observing a node by watching external
output pins of the chip

» Controllability: ease of forcing anode to 0 or 1 by driving input

pins of the chip

« Combinational logic is usually easy to observe and control

* Finite state machines can be very difficult, requiring many cycles
to enter desired state

— Especially if state transition diagram 1s not known to the test engineer
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Stuck-At Faults

How does a chip fail?

— Usually failures are shorts between two conductors or opens in a.conductor

— This can cause very complicated behavior

A simpler model: Stuck-At

— Assume all failures cause nodes to be “stuck-at” 0 or 1, 1.e. shorted to GND or Vbp
— Not quite true, but works well in practice

SSL Fault Detection

ABCE = 0011 is a test pattern for C s-a-0
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Multiple Stuck-Line (MSF) Faults

* More than one line may be stuck at a logic value

s
s-a-0 \B‘ |
Z
C— X
D

Fault: {C s-a-0, x s-a-1}

How many MSL fault can there be in a circuit with n nodes?

How to get test patterns for MSL faults?

Fault universe is too large, MSL fault model seldom used,
especially sinee tests for SSL faults cover many MSL faults
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Test Pattern Generation

» Exhaustive testing: Apply 2" pattern to.n-input circuit
* Not practical for large n
* Advantage: Fault-model independent

Fault-Oriented Test Generation Algorithm:

A —%al 1) Set x to 1: activate fault

B Djm 2) Justity D on x, propagate D
C— X ) to z

D / \

SetCand D to 1 STtthO
Example test pattern: ABCD = 0011 Set either A or B to 0

e Backtracking may be necessary
 Test generation is NP-complete
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Bridging Faults

* Models short circuits, pairs of nodes considered
 Number of bridging faults?
» Feedback vs non-feedback bridging faults

b“dge\ A Blzlz | Wired-AND | Wired-OR
AN )_ 0 0100 0 0
B “ 00102 0 I
1 0|12 0 1
1 1]1]1 1 1

7z =9

What are the test patterns in this example?
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Stuck-Open Faults

Fault-free circuit: z = a+b )

Floating node gy ity circuit: zf = a+b + abz’

7: Previous value of z

Gnd Case l: a=b =1, z pulled down to 0
Case 2: a=1, b =0, z retains previous state

A test fora stuck-open fault requires two patterns
{ab =00, ab =10}
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Seqguential Circuit Test Generation

Primary / n_, : ol » Primary
inputs Combinationa outputs
(controllable) — logic (observable)

State outputs

State inputs
v not observable
(not controllable) —]T;’— Reglsters P ( )

e Difficult problem!

* Exhaustive testing requires 2™ patterns (2™ states and 2"
transitions from each state)

» Every fault requires a sequence of patterns

Initializing sequence: drive to known state
Test activation

Propagation sequence: propagate discrepancy to observable output
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Seqguential Circuit Test Generation

e [terative-array model (pseudo-combinational circuit)

D Q
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Seqguential Circuit Test Generation

s-a-0) D Q Assume initial state
A—r of flip-flop 1s not
B D o\ known
C_
1
y*
Al A0
B 1 j B ]
o l
C X C 1
y ) Backward Y
ABC = 11X traversal ABC =011
in time

Test pattern sequence: {11X, 011} Current time frame
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Design for Testability

» Ad Hoc Design for Testability Techniques
— Method of test points
— Multiplexing and demultiplexing.of test points
— Time sharing of 1/O for normal working and testing modes
— Partitioning of registers and large combinational circuits

» Scan-Path Design
— Scan-path design concept
— Controllability-and observability by means of scan-path
— Full and partial serial scan-paths
— Non-serial scan design
— Classical scan designs
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Ad Hoc Design for Testability

Method of Test Points:

Block 1 is not observable,
Block 1 Block 2 Block 2 is not controllable

Improving controllability and observability:

— OP
1- controllability:
Block 1 — 1 Block 2 CP=0 - normal ?vorking mode
CP =1 - controlling Block 2
with signal 1
CP——
—— OP
0- controllability:
Block1 [ 7 & Block 2 CP=1 - normal \_.vorking mode
CP =0 - controlling Block 2
with signal 0
CP——
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Ad Hoc Design for Testability

Method of Test Points:

Block 1 is not observable,
Block 1 Block 2 Block 2 is not controllable

Improving controllability:

Normal working mode:

CP1=0,CP2=1
Block 1 1 & Block 2 Controlling Block 2 with 1:
Test CP1=1,CP2=1
Controlling Block 2 with 0:
gg; point ( CP220
Normal working mode:
Block 1 MUX Block 2 CP2=0
Controlling Block 2 with 1:
Ject CP1=1,CP2=1
CP1 Boint Controlling Block 2 with 0:
CP2 CP1=0,CP2=1
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Ad Hoc Design for Testability

Multiplexing monitor points:

-0

output pins for observing

monitor points, — MUX ouT
multiplexer can be used:

2" observation points are
replaced by a single
output and n inputs to

address a selected
observation point

To reduce the number of + *

Disadvantage:

Only one observation . _
point can be observed at Number of additional pins: (n+1)
a time Number of observable points: [2"]

Advantage: (n+ 1) <<2"
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Ad Hoc Design for Testability

Multiplexing monitor points:

To reduce the number of
output pins for observing ®—A
monitor points, ®

multiplexer can be used: ® MUX ouT

To reduce the number of \
inputs, a counter (or a 1 o9nq
shift register) can be used ./

to drive the address lines

of the multiplexer

=0

o w— Counter

Disadvantage:

Only one observation

point can be observed at Number of additional pins: 2
a time Nmber of observable points: [2"]

Reset for counter?
Advantage: 2<n<<2"
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Ad Hoc Design for Testability

Demultiplexer for implementing control points:

Normal / \
input lines Block 1 MUX Block2 |
Test
mode
0 CP1 _Q Test point Y,
1 CP2[—@
X | DMUX
2n.1 CPN

2N
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Static Glitch Example

Consider the following circuit with 1 a ’_1‘\FAND1
delays where only one input (input 50 b T L./ | 1->0
b) changes... i v — '
0->1 )1 >-f=abtble
INV ) 1->777
Draw a timing diagram to see what 4 ) 0->1
happens at output with delays. 1 ¢ " AND2
From the logic expression, we see
that b changing should result in the b
output remaining at logic level 1... \
AN
Due to delay, the output goes 1->0- INV \ R*\
>1 and this is an output glitch; we A\
see a static-1 hazard. AND1 O\
:I\'-. \ i
AND2 A\
f f i \M-;
OUTPUT GLITCH!!!
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Static Glitch Elimination

When circuits are implemented as 2-level SOP (2-level POS), we can detect and
remove hazards by inspecting the K-Map and adding redundant product (sum) terms.

bc
00(01/11+10
a —

O, 01/0]|0

1T 001111 1
f=abtb'c

Observe that when input b changes from 1->0 (as in the previous timing diagram), that
we “jump” from one product term to another product term.

B |f adjacent minterms are not covered by the same product term, then a HAZARD
EXISTS!!!
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Static Glitch Elimination

bc
0001 (1110

d ——
0|0 |4140]0
1 o[l A 1]

f=ab+b'c + ac

The extra product term does not include the changing input variable, and therefore
serves to prevent possible momentary output glitches due to this variable.
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Static Glitch Elimination

The redundant product term is not influenced by the changing input.

e — AND!
b S We. N,
v
NV 1->1
! x\T: AND2 —J_'\‘=
1 c—93 — " f=ab+b'c+ac
3
—— AND3
1>
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Ad Hoc Design for Testability

e ——_AND1
b e L/
Ty
INV A 1->1

——\ANDZ —J_Tn}

1 c-e e 7" f=ab+b'c+ac
— AND3 4
1>

Much test generation time can be spent in trying to generate a test for a
redundant fault

26
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Scan Design

il

* Convert each flip-flop to a scan register SCMTCLI;_
— Only costs one extra multiplexer S| & Q
e Normal mode: flip-flops behave as-usual D -

e Scan mode: flip-flops behave as shift register

scan-in

e Contents of flops

b
@)

can be scanned _ Qua [I Jua
out and new | L“ oo | | [ e | 2]
inputs 'n Cloud ].1 Cloud ‘a outputs
values scanned _ 1y ¢ | I \} ST
in I g T
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Scannable Flip-flops
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Built-in Self-test (BIST)

Built-in self-test lets blocks test themselves

— Generate pseudo-random inputs to.comb. logic

— Combine outputs into a syndrome

— With high probability, block: is fault-free if it produces
the expected syndrome
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Built-in Self-test (BIST)

Inputs Circuit
"0 under test Outputs
J— (CUT) :

Test R

generator L, esp?tnse Error
monitor
TGC
(TGC) (RM)

Control I

On-chip test generator and response monitor
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Built-in Self-test (BIST)

Advantages

*Lower cost due to elimination of external tester

* In-system, at-system, high-quality testing

» Faster fault detection, ease of diagnosis

* Overcomes pin limitations and related interfacing problems
* Reduces maintenance and repair costs at system level

Issues

Test strategy (random, exhaustive, deterministic)
Circuit partitioning

Test pattern generation

Exhaustive: counters

Random: Linear-feedback shift registers (LFSRs)
Deterministic: ROM, other methods?

Response analysis

Test control and scheduling
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BIST Logic Circuits

Linear-feedback shift-register (LFSR)

LBD,RJTR T

N S 5
| 0 0
0 1 0
| 0 \
| | v
! 1 !
0 1 \
0 0 A

| 0 0
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BIST Logic Circuits

Single Bit signature register (MISR)

In
D——»« Counter

ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION



BIST Logic Circuits

Multiple-input signature register (MISR)

Test responses

e Multiple-input signature register (MISR) -
‘ + -

e R AR R

Signature
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BILBO

e Built-in Logic Block Observer

— Combine scan with PRSG & signature analysis

D[0]

Di1] Di2]
clo]
i} A
o | o - | @2]/80
s S gp 8
Qio]
Q1]
MODE C[1]  Cl0
. Scan 0 0
Logic Signature
g Bl e =) g I e N
MNormal 1 1
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BILBO
e Built-in Logic Block Observer

— Combine scan with PRSG & signature analysis

D[0]
11 \ D[{] [‘[2\]
0] \ \ \
ci]
L \ | \( \ | L \ I
sl ' gh D— 8 g | /%0
. . — L
0 0 Q1] 0
MODE 1]  C[|
. Scan 0 0
S I
—>| e Go | Amayee [ et 0 1
Mormal 1 1
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BILBO
e Built-in Logic Block Observer

— Combine scan with PRSG & signature analysis

D[]
10 D{1] DI2]
C[0]
ci1]
O [ Ua | U
Q2] / SO
S| [=1 ﬂ.'_‘ (=
gn M ) gk 8
0 0 Q1] 0
MODE C[1]  Cl]
. Scan 0 0
— e Gout || Avayer [—> It o
Mormal 1 1
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BILBO
e Built-in Logic Block Observer

— Combine scan with PRSG & signature analysis

D[o]
01 \ n[{] n[a{
a0 \ \ \
cli]
fLLM\ - \' . \
2]/ 80
sl -1 Y D gh S b | M 8 q]:
0 — Qo]
Q]
MODE C[1]  C[o]
. Scan 0 0
Logic Signature
— PRSG
Cloud Analyzer - ;EEELI ? El
Marmal 1 1
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BILBO
e Built-in Logic Block Observer

— Combine scan with PRSG & signature analysis

00 DIo] Di1] Di2]
clo}
i}
IL L d“%J T ol P A
sl 1 N D Sh 8 h | Y 8 q]:
0 — Qo]
Q]
v
il P
(| ‘
MODE C[1]  Cl0
. Scan 0 0
Signature
" ira m A?ualg,rzer - ﬁ;t ? El
Marmal 1 1
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Thankyou
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