

Advanced VLSI Design: 2021-22 Lecture 14-B CMOS Scaling

By Dr. Sanjay Vidhyadharan

ELECTRICAL

- Currently, technology scaling has a threefold objective:
 - Reduce the gate delay by 30% (43% increase in frequency)
 - Double the transistor density
 - Saving 50% of power (at 43% increase in frequency)
- How is scaling achieved?
 - All the device dimensions (lateral and vertical) are reduced by $1/\alpha$
 - Concentration densities are increased by α
 - Device voltages reduced by $1/\alpha$ (not in all scaling methods)
 - Typically $1/\alpha = 0.7$ (30% reduction in the dimensions)

• The scaling variables are:

Supply voltage:	V_{dd}	\rightarrow	$V_{\rm dd}$ / α
– Gate length:	L	\rightarrow	L/α
– Gate width:	W	->	W/α
Gate-oxide thickness:	t_{ox}	\rightarrow	t_{ox} / α
Junction depth:	X_{j}	\rightarrow	X_j / α
Substrate doping:	N_A	\rightarrow	$N_A \times \alpha$

This is called **constant field** scaling because the electric field across the gate-oxide does not change when the technology is scaled

If the power supply voltage is maintained constant the scaling is called **constant voltage**. In this case, the electric field across the gate-oxide increases as the technology is scaled down.

Due to gate-oxide breakdown, below 0.8µm only "constant field" scaling is used.

Some consequences 30% scaling in the constant field regime ($\alpha = 1.43$, $1/\alpha = 0.7$):

• Device/die area:

$$W \times L \rightarrow (1/\alpha)^2 = 0.49$$

- In practice, microprocessor die size grows about 25% per technology generation! This is a result of added functionality.
- Transistor density:

(unit area)
$$/(W \times L) \rightarrow \alpha^2 = 2.04$$

In practice, memory density has been scaling as expected.
 (not true for microprocessors...)

Gate capacitance:

$$W \times L / t_{ox} \rightarrow 1/\alpha = 0.7$$

Drain current:

$$(W/L) \times (V^2/t_{ox}) \rightarrow 1/\alpha = 0.7$$

Gate delay:

$$W \times L / t_{ox} \rightarrow 1/\alpha = 0.7$$

$$(W/L) \times (V^2/t_{ox}) \rightarrow 1/\alpha = 0.7$$

$$(C \times V) / I \rightarrow 1/\alpha = 0.7$$
Frequency \rightarrow \alpha = 1.43

- In practice, microprocessor frequency has doubled every technology generation (2 to 3 years)! This faster increase rate is due to two factors:
 - the number of gate delays in a clock cycle decreases with time (the designs become highly pipelined)
 - advanced circuit techniques reduce the average gate delay beyond 30% per generation.

Power:

$$C \times V^2 \times f \rightarrow (1/\alpha)^2 = 0.49$$

• Power density:

$$1/t_{ox} \times V^2 \times f \rightarrow 1$$

 $C \times V^2 \times f \to (1/\alpha)^2 = 0.49$ Power density: $1/t_{ox} \times V^2 \times f \to 1$ Active capacitance/unit-area:

Power dissipation is a function of the operation frequency, the power supply voltage and of the circuit size (number of devices). If we normalize the power density to $V^2 \times f$ we obtain the active capacitance per unit area for a given circuit. This parameter can be compared with the oxide capacitance per unit $1/t_{ox} \rightarrow \alpha = 1.43$ area:

$$1/t_{ox} \rightarrow \alpha = 1.43$$

- In practice, for microprocessors, the active capacitance/unit-area only increases between 30% and 35%. Thus, the twofold improvement in logic density between technologies is not achieved.

- Interconnects scaling:
 - Higher densities are only possible if the interconnects also scale.
 - Reduced width → increased resistance
 - Denser interconnects \rightarrow higher capacitance
 - To account for increased parasitics and integration complexity more interconnection layers are added:
 - thinner and tighter layers \rightarrow local interconnections
 - thicker and sparser layers → global interconnections and power

Interconnects are scaling as expected

Quantity	Sensitivity	Constant Field	Constant Voltage	
Scaling Parameters				
Length	L	1/S	1/S	
Width	W	1/S	1/S	
Gate Oxide Thickness	t_{ox}	1/S	1/S	
Supply Voltage	V _{dd}	1/S	1	
Threshold Voltage	V_{TO}	1/S	1	
Doping Density	N_A , N_D	S	S ²	
Device Characteristics				
Area (A)	WL	1/S ²	1/S ²	
β	W/Lt _{ox}	S	S	
D-S Current (I _{DS})	$\beta (V_{dd} - V_T)^2$	1/S	S	
Gate Capacitance (C_g)	WL/t_{ox}	1/S	1/S	
Transistor On-Resistance (R_{tr})	V_{dd}/I_{DS}	1	S	
Intrinsic Gate Delay (7)	$R_{tr}C_g$	1/S	1/S	
Clock Frequency	f	f	f	
Power Dissipation (P)	$I_{DS}V_{dd}$	1/S ²	S	
Power Dissipation Density (P/A)	P/A	1	S ³ 8	

Lithography:

Optics technology	Technology node
248nm mercury-xenon lamp	180 - 250nm
248nm krypton-fluoride laser	130 - 180nm
193nm argon-fluoride laser	100 - 130nm
157nm fluorine laser	70 - 100nm
13.4nm extreme UV	50 - 70nm

Lithography:

- Electron Beam Lithography (EBL)
 - Patterns are derived directly from digital data
 - The process can be direct: no masks
 - Pattern changes can be implemented quickly
 - However:
 - Equipment cost is high
 - Large amount of time required to access all the points on the wafer

Thank you

5/8/2022