

VLSI Design: 2021-22 Lecture 18: Memory Design

By Dr. Sanjay Vidhyadharan

ELECTRICAL ELECTRONICS COM

COMMUNICATION

Semiconductor Memory Classification

•

Volatile Read-Write Memory		Non-Volatile Read-Write Memory	Non-Volatile Read-Only Memory
Random Access	Non-Random Access	EPROM E ² PROM	Mask-Programmed
SRAM DRAM	FIFO LIFO Shift Register CAM	FLASH	Programmable (PROM)
	0		

4/30/2022

Memory Timing: Definitions

COMMUNICATION

ELECTRICAL

ELECTRONICS

Memory Architecture

COMMUNICATION

4/30/2022

ELECTRICAL

ELECTRONICS

INSTRUMENTATION

Array-Structured Memory Architecture

Better ASPECT RATIO

4/30/2022

ELECTRICAL

ELECTRONICS C

COMMUNICATION

INSTRUMENTATION

Hierarchical Memory Architecture

Hierarchical Memory Architecture

4/30/2022

time (ps)

INSTRUMENTATION

ELECTRICAL

ELECTRONICS

COMMUNICATION

ELECTRONICS COMM

ELECTRICAL

COMMUNICATION

COMMUNICATION

SRAM Sizing

ELECTRICAL

High bitlines must not overpower inverters during reads

But low bitlines must write new value into cell

ELECTRONICS

ELECTRICAL ELECTRONICS COMMUNICATION

3-Transistor DRAM Cell

No constraints on device ratios Reads are non-destructive Value stored at node X when writing a "1" = V_{WWL} - V_{Tn}

COMMUNICATION

ELECTRONICS

4/30/2022

ELECTRICAL

1-Transistor DRAM Cell

Write: CS is charged or discharged by asserting WL and BL. Read: Charge redistribution takes places between bit line and storage capacitance

COMMUNICATION

Voltage swing is small; typically around 250 mV

ELECTRONICS

4/30/2022

ELECTRICAL

1-Transistor DRAM Cell

- IT DRAM requires a sense amplifier for each bit line, due to charge redistribution read-out
- > DRAM memory cells are single-end in contrast to SRAM cells.

ELECTRONICS

- The read-out of the 1T DRAM cell is destructive; read and refresh operations are necessary for correct operation.
- Unlike 3T cell, 1T cell requires presence of an extra capacitance that must be explicitly included in the design.
- When writing a "1" into a DRAM cell, a threshold voltage is lost. This charge loss can be circumvented by bootstrapping the word lines to a higher value than V_{DD}

COMMUNICATION

4/30/2022

ELECTRICAL

Read-Only Memory

Address 3 = 10110010 is permanent storage using fuse link

COMMUNICATION

X : means connection

ELECTRICAL

ELECTRONICS

COMMUNICATION

ELECTRICAL

ELECTRONICS

ELECTRONICS

ELECTRICAL

COMMUNICATION

ELECTRICAL

ELECTRONICS

COMMUNICATION

19

ELECTRONICS

ELECTRICAL

COMMUNICATION

INSTRUMENTATION

4. EEPROM

COMMUNICATION

21

ELECTRONICS

MOS OR ROM

COMMUNICATION

INSTRUMENTATION

22

4/30/2022

ELECTRICAL

ELECTRONICS

MOS NOR ROM

ELECTRICAL

COMMUNICATION

INSTRUMENTATION

MOS NAND ROM

4/30/2022

ELECTRICAL

ELECTRONICS

COMMUNICATION

Pre-charged MOS NOR ROM

25

4/30/2022

ELECTRICAL

ELECTRONICS

COMMUNICATION

Row Decoders

COMMUNICATION

Example 8 bit Decoder

- $WL_0 = \overline{A}_7 \overline{A}_6 \overline{A}_5 \overline{A}_4 \overline{A}_3 \overline{A}_2 \overline{A}_1 \overline{A}_0$ $WL_{255} = A_7 A_6 A_5 A_4 A_3 A_2 A_1 A_0$
- 1. Implementation 8 Inverters + 256 NAND
- 2. Implementation 8 Inverters + 256 NOR

ELECTRONICS

4/30/2022

ELECTRICAL

Row Decoders

4/30/2022

Row Decoders

4/30/2022

ELECTRONICS

COMMUNICATION

4-to-1 tree based column decoder

Number of devices drastically reduced. Delay increases quadratically with # of sections; prohibitive for large decoders Solution : Buffers

COMMUNICATION

4/30/2022

ELECTRICAL

ELECTRONICS

- Most prominent solid state storage technology
 - No other technology is available at scale
- NAND- and NOR- flash types available
 - NOR-flash can be byte-addressed, expensive
 - NAND-flash is page addressed, cheap
 - Except in very special circumstances, all flash-storage we see are NAND-flash

COMMUNICATION

ELECTRONICS

4/30/2022

ELECTRICAL

Flash memories store information in memory cells made from floating gate transistors.

NOR flash is faster to read than NAND flash, but it's also more expensive. NAND has a higher memory capacity than NOR.

4/30/2022

COMMUNICATION

4/30/2022

COMMUNICATION

NOR FLASH memories are very fast to program and read. Erasure through tunneling is much slower. However, this kind of array suffers from low density due to the same reason that impacts NOR ROM density the need for multiple grounds.

COMMUNICATION

4/30/2022

ELECTRICAL

ELECTRONICS

COMMUNICATION

ELECTRONICS

ELECTRICAL

Content Addressable Memory (CAM)

- Extension of ordinary memory (e.g. SRAM)
 - Read and write memory as usual

ELECTRONICS

- Also match to see which words contain a key

COMMUNICATION

ELECTRICAL

CAMs

4/30/2022

CAMs

- Read and write like ordinary SRAM
- For matching:
 - Leave wordline low
 - Precharge matchlines
 - Place key on bitlines
 - Matchlines evaluate
- Miss line
 - Pseudo-nMOS NOR of match lines

COMMUNICATION

- Goes high if no words match

ELECTRONICS

ELECTRICAL

4/30/2022

ELECTRONICS

COMMUNICATION

INSTRUMENTATION