

VLSI Design: 2021-22
Lecture 16
Arithmetic Circuits: Part-1

By Dr. Sanjay Vidhyadharan

ELECTRICAL

Microprocessor Design

ALU Design

Half Adder

Inp	outs	Out	put
A	В	Carry	Sum
o	0	0	0
o	1	0	1
1	0	0	1
1	1	1	0

K-map for Sum

K-map for Carry

$$Sum = X \cdot Y' + X' \cdot Y = X \bigoplus Y$$

$$Carry = X \cdot Y$$

Time Delay for the Half Adder?

1 gate delay

A gate delay of an xor for the half sum

A gate delay of an AND gate for the carry out

Full Adder

Full-adder can also implemented with two half adders and one OR gate.

$$\begin{split} S &= A \oplus B \oplus C_{in} \\ C_{out} &= AB + BC_{in} + AC_{in} \\ &= AB + C_{in} (A+B) \\ &= AB + C_{in} (A \oplus B+AB) \\ &= AB + C_{in} (A \oplus B) + C_{in} AB = AB(1+C_{in}) + C_{in} (A \oplus B) \\ &= AB + C_{in} (A \oplus B) \end{split}$$

Full Adder

A	В	Carry In	Sum	Carry out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1 (

CMOS 28T Adder

A	В	Carry In	Sum	Carry out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$\mathit{Carry}(\mathit{CY}) = \mathit{AB} + \mathit{BC} + \mathit{AC}$$

$$Sum(S) = \bar{A}\bar{B}C + A\bar{B}\bar{C} + \bar{A}B\bar{C} + ABC$$

$$CY = AB + C(A + B)$$
 Simplified
 $S = \overline{CY}(A + B + C) + ABC$ Expressions

CMOS 28T Mirror Adder

$$Carry = AB + BC + CA = AB + C(A + B)$$

 $Pull - Down \ Network \ for \ Carry \ Bar = AB + C(A + B)$

$$Pull-UP$$
 Network for Carry $Bar = A'B' + B'C' + C'A'$
= $A'B' + C'(A' + B')$

CMOS 28T Mirror Adder

Ripple Carry Adder

This is called Ripple Carry Adder, because of the construction with full adders are connected in cascade.

4-bit Ripple Carry Adder

Delay= 4 X Full Adder Delay = 8 Gate Delays

Delay=
$$(N-1) t_{carry} + t_{sum}$$

1-bit CLA

CLLB

$$C_1 = G_0 + P_0 C_0$$

$$C_2 = G_1 + P_1 C_1$$

$$C_2 = G_1 + P_1 C_1$$

$$C_2 = G_1 + P_1 (G_0 + P_0 C_0)$$

$$= G_1 + P_1 G_0 + P_1 P_0 C_0$$

$$C_2 = G_1 + P_1 G_0 + P_1 P_0 C_0$$

$$C_1 = G_0 + P_0 C_0$$

$$C_1 = G_0 + P_0 C_0$$

$$C_2 = G_1 + P_1 G_0 + P_1 P_0 C_0$$

$$C_3 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$$

$$\begin{split} &C_{3} = G_{2} + P_{2}G_{1} + P_{2}P_{1}G_{0} + P_{2}P_{1}P_{0}C_{0} \\ &C_{4} = G_{3} + P_{3}G_{2} + P_{3}P_{2}G_{1} + P_{3}P_{2}P_{1}G_{0} + P_{3}P_{2}P_{1}P_{0}C_{0} \end{split}$$

8 Bit Full Adder

Delay = 2 X 3 = 6 Gate Delay

Ripple Carry Adder

8 Bit Full Adder

Delay = 8 X 2 Gate Delay

Carry Bypass or Carry Skip Adder

Carry Bypass or Carry Skip Adder

Design N-bit adder using N/M equal length stages e.g. N = 16, M = 4

What is the critical path?

$$t_p = t_{\text{setup}} + Mt_{\text{carry}} + (N/M-1)t_{\text{bypass}} + Mt_{\text{carry}} + t_{\text{sum}}$$
, i.e. O(N)

Carry Ripple versus Carry Bypass

22

Manchester Carry Chain

Linear Carry-Select Adder

Square Root Carry-Select Adder

$$t_{add} = t_{setup} + Mt_{carry} + (\sqrt{2N})t_{mux} + t_{sum}$$

Square Root Carry-Select Adder

N Bit adder, M – Bits in First Stage, P – Number of Stages

$$N = M + (M+1) + (M+2) + (M+3) + \dots + (M+P-1)$$

$$N = MP + \frac{P(P-1)}{2}$$

$$N = \frac{P^2}{2} + P(M - \frac{1}{2})$$

$$M \ll N \ (e. M = 2 \ and \ N = 64)$$

$$N = \frac{P^2}{2} + P(M - \frac{1}{2})$$

$$M \ll N \ (e. M = 2 \ and \ N = 64)$$

$$N \approx \frac{P^2}{2}$$

Adder Delays - Comparison

Serial Adder

Block Diagram of a 4-bit Serial Adder with Accumulator

4 Bit-Adder Subtractor

Decimal	2's comp.
7	0111
6	0110
5	0101
4	0100
3	0011
2	0010
1	0001
0	0000
-0	-
-1	1111
-2	1110
-3	1101
-4	1100
-5	1011
-6	1010
-7	1001
-8	1000

General digital systems

User enters decimal \rightarrow BCD i/p \rightarrow Binary i/p \rightarrow compute in binary \rightarrow Binary o/p \rightarrow BCD o/p \rightarrow Decimal output shown to user

BCD addition

$$4 + 5$$

Expected Result

$$4 + 8$$

1 1 0 0 Is this expected Result?

Expected answer

0001 0010

is BCD of 12

BCD addition

$$4 + 8$$

Greater than 9

$$\boxed{100}$$

0110

Add correction of +6

$$0\ 0\ 0\ 1\ 0\ 0\ 1\ 0$$

BCD addition

After addition if carry out is generated or if sum is greater than 9 there is need for correction

BCD addition

1000

1001

Thank you