

Digital Design: 2021-22

Lecture 28: Programable Logic Devices

By Dr. Sanjay Vidhyadharan

ELECTRICAL

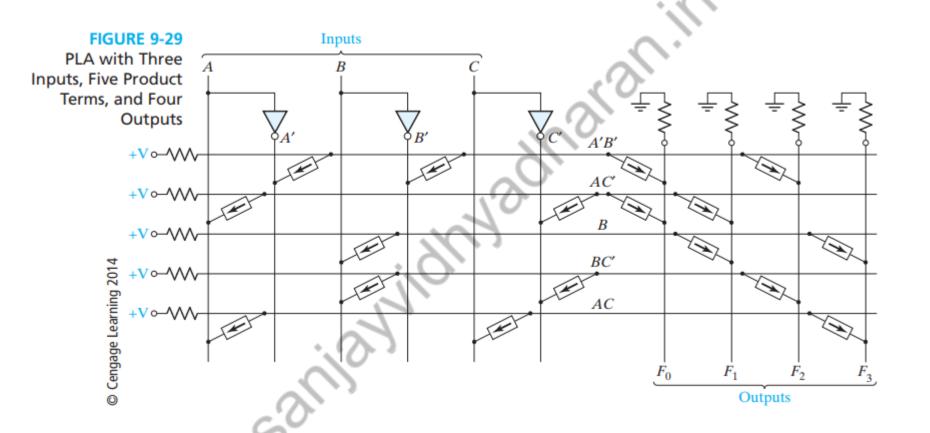
Types of PLD

Programable Logic Array (PLA)

Programable Array Logic Array (PAL)

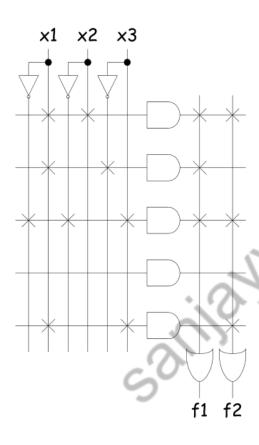
Simple Programmable Logic Device (SPLD)

Complex Programmable Logic Device (CPLD)


Field Programmable Gate Arrays (FPGAs)

Programable Logic Array (PLA)

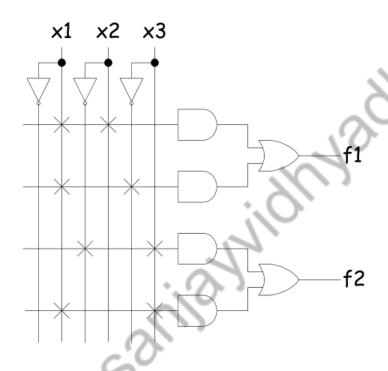
Programmable device capable of implementing functions expressed in SOP.


- Consists of input buffers and inverters followed by:
- Programmable AND plane, followed by
- Programmable OR plane.
- Can implement m logic functions of n variables. Limit is the number of product terms that can be generated inside of the device.

Programable Logic Array (PLA)

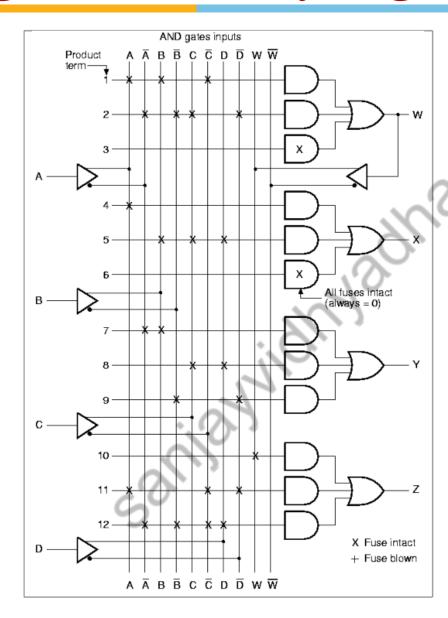
Programable Logic Array (PLA)

□ Example implementing 2 logic functions of 3 inputs using a 3-5-2 PLA.



$$f_1 = x_1x_2 + x_1\overline{x}_3 + \overline{x}_1\overline{x}_2x_3$$

$$f_2 = x_1x_2 + \overline{x}_1\overline{x}_2x_3 + x_1x_3$$


- Similar to a PLA, but only has a programmable AND plane.
 - The OR plane is fixed.
- Not as flexible as a PLA since only certain AND gates feed each OR gate, but has fewer things that need programming.

□ Example of a PAL:

$$f_1 = x_1 x_2 + x_1 \overline{x}_3$$

$$f_2 = \overline{x}_2 x_3 + x_1 x_3$$

Example

$$W(A, B, C, D) = \sum (2, 12, 13)$$

$$X(A, B, C, D) = \sum (7,8,9,10,11,12,13,14,15)$$

$$Y(A, B, C, D) = \sum (1,2,8,12,13)$$

$$W(A, B, C, D) = ABC' + A'B'CD'$$

$$X(A, B, C, D) = A + BCD$$

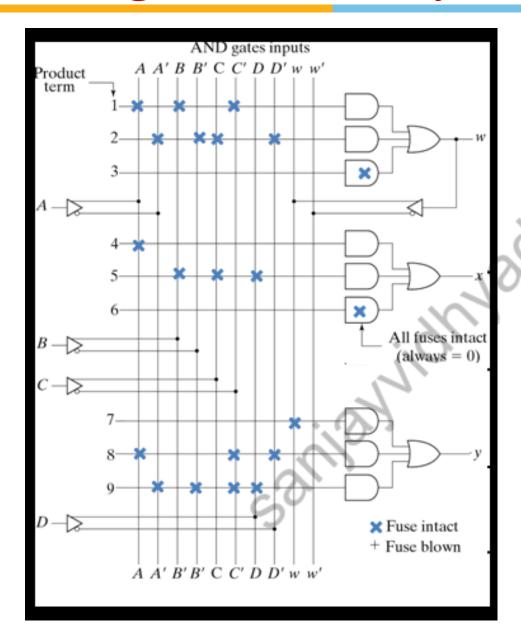
$$Y(A, B, C, D) = ABC' + A'B'CD' + AC'D' + A'B'C'D$$

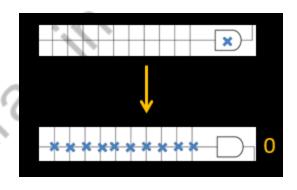
$$=$$
 W + AC'D' + A'B'C'D

Example

$$W(A, B, C, D) = ABC' + A'B'CD'$$

$$X(A, B, C, D) = A + BCD$$


$$Y(A, B, C, D) = W + AC'D' + A'B'C'D$$


Product	AND Inputs				Outputs	
	А	В	С	D	W	
1	1	1	0	-		W = ABC' + A'B'CD'
2	0	0	1	0		
3			1-1	J		
4	1		7.			X = A + BCD
5	*	1	1	1		
6	<					
7	C-0.				1	Y = W + AC'D' + A'B'C'D
8	7		0	0		
9	0	0	0	1		

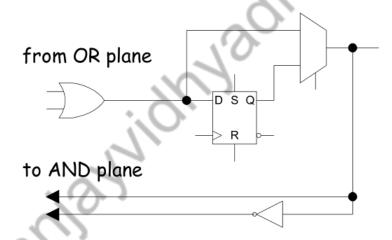
Section 1

Section 2

Section 3

Example

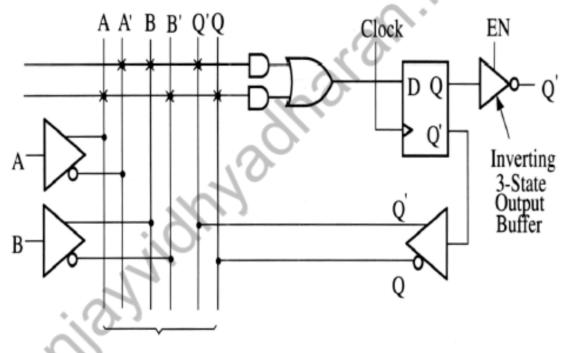
$$W(A, B, C, D) = ABC' + A'B'CD'$$


$$X(A, B, C, D) = A + BCD$$

$$Y(A, B, C, D) = W + AC'D' + A'B'C'D$$

SPLD

Simple Programmable Logic Device (SPLD)


- To implement sequential circuits, take a PAL and add some flip-flops at the output of the OR plane.
- For example...

- □ Above circuit (plus SOP from the AND plane and OR gate) form a MacroCell.
- Several MacroCells together in the same IC is called an SPLD.

Sequential PAL

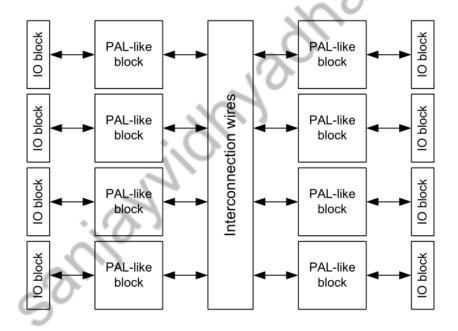
Registered (Sequential) PAL:

Programmable AND Array

$$Q^+=D=A'BQ'+AB'Q$$

Complex Programable Logic Device

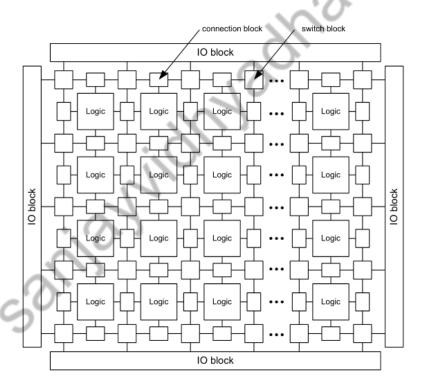
Complex Programmable Logic Device (CPLD)


- □ PLA, PAL and SPLD typically contain small number of outputs (e.g., 16 outputs) with many inputs (e.g., 36 inputs) and a fair number of product terms.
 - Therefore only good for simple circuits where each equation has a wide fanin.

- Using a Complex Programmable Logic Device (CPLD) is the "next step" if we have a large complicated circuit...
- CLPD consists of many SPLD connected together by a Programmable Routing Fabric all in the same IC.

Complex Programable Logic Device

Complex Programmable Logic Device (CPLD)


□ Typical architecture (each PAL-like block has many inputs - e.g., 36 - , many product terms - e.g., 80 - and several outputs - e.g., 16).

Field Programable Gate Array

Field Programmable Gate Array (FPGA)

□ Typical FPGA consists of many small logic blocks interconnected by programmable routing resources.

Thank you