

INSTRUMENTATION

Digital Design : 2021-22 Lecture 27 : Memory

By Dr. Sanjay Vidhyadharan

ELECTRICAL ELECTRONICS

Types of memory used in digital systems

RAM (Random Access Memory)

-Can perform both Read and Write Operations

-Stored information is lost when power is turned off

ROM (Read Only Memory)

-Can perform only Read operations

-Suitable information already stored and can be retrieved at any time

-Binary information "Programmed" into ROM by embedded hardware

Hard Disks

Read / Write Non-volatile

Magnetic SSD

Read-Only Memory

8-bit data is called Byte, 16 bit is called Word

A block diagram of a ROM is shown below. It consists of k address inputs and n data outputs.

The number of words in a ROM is determined from the fact that k address input lines are needed to specify 2^k words.

n represents the output data length

ELECTRICAL

Read-Only Memory

- May have 100s of million gates interconnected through 100s of thousands of internal path

-To show internal logic of such a device – employ a special gate symbology applicable to array logic

ELECTRONICS

ELECTRICAL

Read-Only Memory

Each OR gate has 2^k inputs

5

Address 3 = 10110010 is permanent storage using fuse link

X : means connection

ELECTRICAL

COMMUNICATION

ELECTRICAL

ELECTRONICS

1. Masking During Metallization (PROM)

ELECTRICAL ELECTRONICS

2. Fuse (PROM)

10

ELECTRICAL ELECTRONICS

ELECTRICAL

ELECTRONICS

COMMUNICATION

11

ELECTRICAL

ELECTRONICS

COMMUNICATION

COMMUNICATION

ELECTRICAL

ELECTRONICS

INSTRUMENTATION

13

14

ELECTRICAL ELECTRONICS

□ E.g., Implement the 3-input logics $f_0 = \sum (0,1,5,7)$, $f_1 = \sum (0,1,2,6)$ and $f_2 = \sum (2,3,4)$ using a ROM.

COMMUNICATION

ELECTRICAL

ELECTRONICS

Example: Design a combinational circuit using a ROM. The circuit accepts a 3-bit number and generates an output binary number equal to the square of the input number.

Inputs				Outputs					
A1	A ₁	Ao	B ₅	B4	B3.	B ₂	B ₁	Bo	Decimal
0	0	0	0	à	30	0	0	0	0
0	0	1	0	.0	0	0	0	1	1
0	1	0	0_*	0	0	1	0	0	4
0	1	1	.07	0	1	0	0	. 1	9
1	0	0	00	1	0	0	0	0	16
1	0	1	0,	1	1	0	0	1	25
1	1	0	CO 1	0	0	1	0	0	36
1	1	1	51	1	0	0	0	1	49

Example: Design a combinational circuit using a ROM. The circuit accepts a 3-bit number and generates an output binary number equal to the square of the input number.

COMMUNICATION

ELECTRICAL

ELECTRONICS

Example: Design a combinational circuit using a ROM. The circuit accepts a 3-bit number and generates an output binary number equal to the square of the input number.

COMMUNICATION

ELECTRICAL

ELECTRONICS

18

COMMUNICATION

ELECTRICAL

ELECTRONICS

19