

VLSI SYSTEMS AND ARCHITECTURE 2021-22 Lecture 3 Computer A rithmetic Algorithms and

Computer Arithmetic Algorithms and Implementations

By Dr. Sanjay Vidhyadharan

ELECTRICAL

Half Adder

Inputs		Output		
A	В	Carry	Sum	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	

K-map for Sum

K-map for Carry

Sum =
$$X \cdot Y' + X' \cdot Y = X \oplus Y$$

Carry = $X \cdot Y$

Time Delay for the Half Adder?

1 gate delay

A gate delay of an xor for the half sum

A gate delay of an AND gate for the carry out

Full Adder

Full-adder can also implemented with two half adders and one OR gate.

$$\begin{split} S &= A \oplus B \oplus C_{in} \\ C_{out} &= AB + BC_{in} + AC_{in} \\ &= AB + C_{in} (A+B) \\ &= AB + C_{in} (A \oplus B+AB) \\ &= AB + C_{in} (A \oplus B) + C_{in} AB = AB(1+C_{in}) + C_{in} (A \oplus B) \\ &= AB + C_{in} (A \oplus B) \end{split}$$

Ripple Carry Adder

This is called Ripple Carry Adder, because of the construction with full adders are connected in cascade.

Delay= 4 X Full Adder Delay = 12 Gate Delays

$$C_2 = G_1 + P_1 C_1$$

$$C_{2}=G_{1}+P_{1}C_{1}$$

$$C_{2}=G_{1}+P_{1}(G_{0}+P_{0}C_{0})$$

$$=G_{1}+P_{1}G_{0}+P_{1}P_{0}C_{0}$$

$$C_2 = G_1 + P_1G_0 + P_1P_0C_0$$

$$C_1 = G_0 + P_0 C_0$$

$$C_1 = G_0 + P_0 C_0$$

$$C_2 = G_1 + P_1 G_0 + P_1 P_0 C_0$$

$$C_3 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$$

$$\begin{split} &C_1 = G_0 + P_0 C_0 \\ &C_2 = G_1 + P_1 G_0 + P_1 P_0 C_0 \\ &C_3 = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0 \\ &C_4 = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 C_0 \end{split}$$

8 Bit Full Adder

Delay = 2 X 3 = 6 Gate Delay

Ripple Carry Adder

8 Bit Full Adder

4-bit Ripple Carry Adder

4-bit Ripple Carry Adder

Delay = 8 X 3 Gate Delay

Serial Adder

Block Diagram of a 4-bit Serial Adder with Accumulator

3/5/2022

4 Bit-Adder Subtractor

Decimal	2's comp.
7	0111
6	0110
5	0101
4	0100
3	0011
2	0010
1	0001
0	0000
-0	-
-1	1111
-2	1110
-3	1101
-4	1100
-5	1011
-6	1010
-7	1001
-8	1000

Overflow

Binary Multiplier

Binary Multiplier (2-bit x 2-bit)

$$B_1 B_0$$

Gate for 1-bit Multiplication
$$(B_0A_0)$$
?

	X	A_1	A_0
		B_1A_0	B_0A_0
	B_1A_1	B_0A_1	
3	P_2	P_1	P ₀

1	\mathbf{A}_{0}	B ₀	F
,	0	0	0
	0	1	0
	1	0	0
	1	1	1

Binary Multiplier (2-bit x 2-bit)

Binary Multiplier (4-bit x 4-bit)

$$(Multiplicand) \ B_3 \ B_2 \ B_1 \ B_0 \\ (Multiplier) \ A3 \ A_2 \ A_1 \ A_0 \\ \hline A_0 B_3 \ A_0 B_2 \ A_0 B_1 \ A_0 B_0 \\ A_1 B_3 \ A_1 B_2 \ A_1 B_1 \ A_1 B_0 \\ A_2 B_3 \ A_2 B_2 \ A_2 B_1 \ A_2 B_0 \\ A_3 B_3 \ A_3 B_2 \ A_3 B_1 \ A_3 B_0$$

Binary Multiplier (4-bit x 4-bit)

Booth Algorithm

Booth Algorithm

(a) Register configuration

Booth Algorithm

	3x5			
	M	Α «	Q	
Initial Condition	0011	00000	010 <mark>1</mark>	
Clk (Load)	0011	00011	0101	1
Clk ↓ (Shift Right)	0011	00001	1010	
Clk (Load)	0011	00001	101 0	2
Clk ↓ (Shift Right)	0011	00000	110 <mark>1</mark>	
Clk (Load)	0011	00011	110 <mark>1</mark>	3
Clk ↓ (Shift Right)	0011	00001	1110	
Clk (Load)	0011	00001	1110	4
Clk ↓ (Shift Right)	0011	00000	1111	

Thank you sarianidh you

3/5/2022