

Digital Design: 2021-22

Lecture 23: Synchronous Counters

By Dr. Sanjay Vidhyadharan

ELECTRICAL

Binary Synchronous Counter

3 bit binary counter

0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1
0	0	0	0

- · Idea:
 - to use same clock for all flip-flops

Synchronous Counters

- There is a common clock
 - that triggers all flip-flops simultaneously
 - If T = 0 or J = K = 0 the flip-flop does not change state.
 - If T = 1 or J = K = 1 the flip-flop does change state.
- Design procedure is so simple
 - no need for going through sequential logic design process
 - Ao is always complemented
 - A_1 is complemented when $A_0 = 1$
 - A_2 is complemented when $A_0 = 1$ and $A_1 = 1$
 - so on

4-bit Binary Synchronous Counter

Up-Down Binary Counter

- When counting downward
 - the least significant bit is always complemented (with each clock pulse)
 - A bit in any other position is complemented if all lower significant bits are equal to 0.
 - For example: 0100
 - · Next state: 0011
 - For example: 1100
 - · Next state: 1011

STATE TABLE

COUNT	Q1	Q0
3	1	1
2	1	0
1	0	1
0	0	0

Up-Down Binary Counter

Synchronous BCD Counter

Better to apply the sequential circuit design procedure

F	resent state Next state output Flip-Flop inputs						Next state			ts		
A ₈	A ₄	A ₂	A ₁	A ₈	A ₄	A ₂	A ₁	Y	T ₈	T ₄	T ₂	T_1
0	0	0	0	0	0	0	1/	0	0	0	0	1
0	0	0	1	0	0	1	0	0	0	0	1	1
0	0	1	0	0	0	1	7.4	0	0	0	0	1
0	0	1	1	0	1	0	0	0	0	1	1	1
0	1	0	0	0	1	0	1	0	0	0	0	1
0	1	0	1	0	1	1	0	0	0	0	1	1
0	1	1	0	0	1	1	1	0	0	0	0	1
0	1	1	1.0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	0	0	1	0	0	0	0	1
1	0	0	1	0	0	0	0	1	1	0	0	1

Synchronous BCD Counter

- · The flip-flop input equations
 - $-T_1 = 1$
 - $T_2 = A_8' A_1$
 - $T_4 = A_2 A_1$
 - $T_8 = A_8 A_1 + A_4 A_2 A_1$
- Output equation
 - $y = A_8 A_1$
- Cost
 - Four Tflip-flops
 - four 2-input AND gates
 - one OR gate
 - one inverter

Binary Counter with Parallel Load

Binary Counter with Parallel Load

Function Table

clear	clock	load	Count	Function
0	X	X	X	clear to 0
1	↑	1	X	load inputs
1	1	10	1	count up
1	501	0	0	no change

Other Counters

Ring Counter

- Timing signals control the sequence of operations in a digital system
- A ring counter is a circular shift register with only one flip-flop being set at any particular time, all others are cleared.

initial value 1000

Ring Counter

Sequence of timing signals

Ring Counter

- To generate 2ⁿ timing signals,
 - we need a shift register with 2ⁿ flip-flops
- or, we can construct the ring counter with a binary counter and a decoder

Cost:

- ·2 flip-flop
- ·2-to-4 line decoder

Cost in general case:

- n flip-flops
- · n-to-2ⁿ line decoder

- A k-bit ring counter can generate k distinguishable states
- The number of states can be doubled if the shift register is connected as a <u>switch-tail</u> ring

· Count sequence and required decoding

sequence	Flip-flop outputs				
number	X	У	Z	T	Output
1	0	0	0	0	X'T'
2	1	0	0	0	XY'
3	1	1	0	0	YZ'
4	1	1	1	0	ZT'
5	1	1	1	1	XT
6	0	1	1	1	X'Y
7	0	0	1	1	Y'Z
8	0	0	0	1	Z'T

Decoding circuit

Unused States in Counters

4-bit Johnson counter

	Inp	outs			Out	puts	
X	У	Z	Т	Х	У	Z	Т
0	0	0	0	1	0	0	0
1	0	0	0	1	1	0	0
1	1	0	0	1	1	40	0
1	1	1	0	1	1	() L	1
1	1	1	1	0	1	1	1
0	1	1	1	0	0	1	1
0	0	1	1	0	0	0	1
0	0	0	1	0	0	0	0
1	0	1	0	1	1	0	1
1	1	0	1	0	1	1	0
0	1	1	0	1	0	1	1
1	0	1	1	0	1	0	1
0	1	c_0	1	0	0	0	0
0	0	1	0	1	0	0	1
1	0	0	1	0	1	0	0
0	1	0	0	1	0	0	0

K-Maps

$$X = T'$$

$$Y = X$$

ZT				:(0)
XX	00	01	11	10
00			.0	
01				1
11	1	16	1	1
10				

$$Z = XY + YZ$$

T = Z

Unused States in Counters

Remedy

. State diagram States in Counters

Thank you