VLSI Design : 2021-22
Lecture 3
CMOS Inverter Transient Response
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CMOS Inverter: Transient Response
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CMOS Inverter: Transient Response
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CMOQOS Inverter: Delay-Time Definitions

By definition, TP, is the time delay between the V50 %-transition of the rising input voltage
and the V50%-transition of the falling output voltage. Similarly, TP ,, is defined as the time
delay between the VV50% -transition of the falling input voltage and the V50 %-transition of the
rising output voltage.

To simplify the analysis and the derivation of delay expressions, the input voltage waveform is
usually assumed to be an ideal step pulse with zero rise and fall times. Under this assumption,
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CMOS Inverter: Transient Response
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CMOQOS Inverter: Delay-Time Calculation

Three Methods

1. Average Current Model
2. Differential Equation Model
3. 15t Order RC delay Model
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CMOQOS Inverter: Delay-Time Calculation

Average Current Model

c = ﬂ > 1= ﬂ = dv
v dt dt
T - Cload AVHL Cload '(VOH - VSO%) —_— ngad 'AVLH - Ctoad '(VSO% B VOL)
PHL Lo nr | Lygur Lave, LA - Im,g, LH

Note that the average current during high-to-low transition can be calculated by using the
current values at the beginning and the end of the transition.

Iavg HL= 2[‘6 Vin=Vou. V. "VOH +ic v:u VOHrVom-""so%
kW, Vbsyy
( ov ) DS
I k W(VDD - VT) L
b= VDD VDD
knW (Vop—=Vr —=47) =5~
b = L

Similarly, the average capacitance current during low-to-high transition is
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CMOQOS Inverter: Delay-Time Calculation

Differential Equation Model Vv
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CMOQOS Inverter: Delay-Time Calculation

Differential Equation Model
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CMOS Inverter: Delay-Time Calculation

Differential Equation Model
Approximate by assuming in saturation:
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CMOS Inverter: Delay-Time Calculation

Differential Equation Model
Taking Velocity saturation into consideration
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CMOS Inverter: Transient Response

15t Order RC delay Model
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CMOS Inverter: Transient Response

15t Order RC delay Model Voo Voo
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Empirical values have been found for R, and Rp, |
Vfﬂ= 0 fn; VDD

1 2 . 5 (a) Low-to-high (b) High-to-low
Ry = kQ
YL,
30
Rp = kQ
T/,

Furthermore, it has been“found that these values apply for a number of CMOS fabrication
processes including 0.25im, 0.18 um, and 0.13 um (see Hodges et al., 2004).
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Sizing of CMOS Inverter

Increase PMOS size -> improve tp, ., but degrades tp,,, !

However delays

are identical @
=24
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Sizing of CMOS Inverter

tp = O°69Req(cint+cext)
= 0.69R,.C,,(1+C,,/C;,) = t,0(1+C,./Cp)

ext l ext l
t,0 = 0.69 R, C,, represents the delay of the inverter-only loaded by its own intrinsic
capacitance (C, = 0), and 1s called the intrinsic or-unloaded delay.

» The intrinsic delay of the inverter tp0 is independent of the sizing of the gate, and is
purely determined by technology and inverter layout.

» When no load is present, an increase,in-the drive of the gate is totally offset by the
increased capacitance.
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Sizing of CMOS Inverter

[ = 0.69R€q(cint+cext)
= 0.69R,,C;,,(1+C,../ Cp) = t,0(1+C,p/ Ci)

I ext 1 ext 1

Cint: S Cext

x 10
3.8 .

3.6

» Making S infinitely large yields the
maximum obtainable performance gain,
eliminating the impact of any external
load, and reducing the delay to,‘the

3.4

3.2

t (sec)

Intrinsic one. 2.8
> Yet, any sizing factor A S*nthat is 2.6
sufficiently larger than (€ext”/Cint ) 2.4

produces similar results-atva substantial
gain in silicon area.
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Sizing of CMQOS Chain of Inverters

Cim‘ — ch
v Is a proportionality factor, which is only a function of technologyand is close to 1 for
most sub-micron processes.

CIE”L' A
t, = pﬂ(l T 'YC]E) - tpﬂ(l +f/7) f.=Cex/Cy
g
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the delay of the j-th inverter stage is

t; = to (1# Cgjea/(vCqy))) = too(1 + 1/ 7)
and Sttt H oy
SO th= 2t = o 2 (1 + Cyiui/(vCy)))

Q If C, is given
e How should the inverters be sized?

e How many stages are needed to minimize the delay?
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Sizing of CMQOS Chain of Inverters
|n——Do—Do ----- Do——om

L 2 N
LG LG

The optimum size of each inverter is the geometric mean of its neighbours — meaning that

if each inverter is sized up by the same factor f wrt the preceding gate, it will have the

same effective fan-out and the same delay

= NYourcs, = \F

where the overall effective fan-out of the circuit is

F=C/Cy

and the minimum delay through the inverter chain is
N
t,=Nty (1+(VF)/7)

0 The relationship between t; and F is linear for one inverter,

square root for two, etc.
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Sizing of CMQOS Chain of Inverters

0 What is the optimal value for N given F (= fN)-?

e if the number of stages is too large, the intrinsic delay of the
stages becomes dominate

e if the number of stages is too small, the effective fan-out of each
stage becomes dominate

2 The optimum N is found by differentiating the minimum
delay expression divided by the number of stages and
setting the result to 0, giving

y + VF - (NF In(F)N=0 and f=ell+

2 For y = 0 (ignoring self-loading) N = In(F)
and the effective-fan out (tapering factor) isf=¢e =2.718

a Fory =1 (thetypical case) N =In(F)-1
and the effective fan-out (tapering factor) is f = 3.6
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Sizing of CMQOS Chain of Inverters
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2 Choosing f larger than optimum has little effect on delay
and reduces the number of stages (and area).
e So it is common practice to use f =4 (for y = 1) and reduce N

e Too many stages has a substantial negative impact on delay
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Sizing of CMQOS Chain of Inverters

F=64 N=In(F)—1=316 N 1 ty
L 1 1° 64 65
1 Cyi= C.=64Cy T
— 2 8 18
T C.=64C,
——’o 3 4 15
f__ o1 = =64 C,; f
——’0 @6@— 4 2.8 15.3
[ Cy4= =64 C,; f
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Short Circuit Loss
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> Use devices with/V,; close to % & steep switching characteristics
» Short Circuit loss reduces with C, 4
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Short Circuit Loss
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» Short Circuit loss reduces with C, 4
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Switching Loss

Power Consuming

Transition at the
—C{ EPMOS Output Node

o

NNy

Vin Vout

—{ Cwad = Chrain +

C:’nrerconnect + Cinput

Energy stored in C, 4. (€)= fOVDD Ve € dV, = ;.ng* Cy,
Energy consumed from power supply=Vpp fOT i(t)dt = Vpp.Qc, = Vip.C
Energy dissipated in pMOSFET during charging = % Vap.CyL

Energy dissipated in nNMOSFET during discharging = % Vap.CL

Power Consumption = Frequency. V3p. C,
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Ring Oscillator Circuit
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» The ring oscillator circuit can be used as a very simple pulse generator

» Utilized to characterize a particular design and/or a new fabrication process.
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Thankyou
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