

VLSI SYSTEMS AND ARCHITECTURE 2021-22 Lecture 1 Introduction to VLSI Architecture

By Dr. Sanjay Vidhyadharan

ELECTRICAL

ELECTRONICS

VLSI System Design

VLSI Design Starts with System Specifications

The System specifications include

- > Technical Requirements,
- ➤ Market requirements and
- ➤ Economic Considerations

Technical Requirements include

- > Size of the IC,
- > The maximum amount of power that can be consumed and
- ➤ The performance and the functionality

VLSI Design Styles

1. FPGA

- > CLBs have also been introduced to map complex functions
- ➤ Behavioral description of functionality, using a hardware description language (e.g. VHDL)
- FPGA-based design is the very short turn-around time, Fast Prototyping
- No physical manufacturing step is necessary
- Cost effective for small-volume production
- ➤ Slower, Bulkier, Complex, Higher Power Requirements, Expensive for Large-volume

VLSI Design Styles

2. Standard Cell or Semi-Custom Design

It uses pre-designed logic cell(and gates, OR gate, multiplexers) known as standard cells.

- Technical Specifications are Optimised using EDA tools before fabrication
- Medium Prototyping time.
- **Expensive for Small-volume Production**

VLSI Design Styles

3. Full-Custom Design

Full custom design requires all the components to be designed and verified right from the transistor level. This methodology is used for mass production

- Technical Specifications are Best Optimised the most using EDA tools before fabrication
- High Prototyping time.
- **Expensive for Small-volume Production**

VLSI Design Flow

VLSI Architecture

[4] V. Natarajan, A. Nagarajan, N. Pandian, and V. Savithri, "Low Power Design Methodology," 02 2018. isbn = 978-953-51-3863-1, doi = 10.5772/intechopen.73729

 $[Online]. \ Available: \ https://www.intechopen.com/books/very-large-scale-integration/low-power-design-methodology$

Ex: Behavioral Model of an Adder

$$\mathbf{Z} = \mathbf{A} + \mathbf{B} + \mathbf{C} + \mathbf{D}$$

Architectural choices

to realize digital hardware solution for a given behavioral description - creation of suitable architectural plan

Performance Figure	Value
Function Delay	$3 * T_{pd_adder}$
Power	$3 * P_{adder}$
Throughput	@ 3 $*T_{pd_adder}$
Gate complexity	$3 * G_{adder}$
Functional Flexibility	Nil
Function Expandability	Nil

Performance Figure	Value
Function Delay	$2*T_{pd_adder}$
Power	$3 * P_{adder}$
Throughput	$@2*_{T_{pd_adder}}$
Gate complexity	$3 * G_{adder}$
Functional Flexibility	Nil
Function Expandability	Nil

Performance Figure	Value
Function Delay	$2*T_{ m Clock}$
Power	$3 * P_{adder} + 3 * P_{Regsiter}$
Throughput	$@ T_{Clock} (T_{clk-Q} + T_{pd_adder} + T_{setup})$
Gate complexity	$3 * G_{adder} + 2 * G_{Register}$
Functional Flexibility	Nil
Function Expandability	Nil

11

Performance Figure	Value
Function Delay	$2 * T_{ALU}$
Power	$3 * P_{ALU}$
Throughput	@ 2*T _{ALU}
Gate complexity	$3 * G_{ALU}$
Functional Flexibility	Yes
Function Expandability	Nil

Performance Figure	Value
Function Delay	$T_{MUX} + T_{ALU} + T_{clk-Q}$
Power	$P_{MUX} + P_{ALU} + P_{Regsiter}$
Throughput	@ 4 * T _{CLK}
Gate complexity	$G_{MUX} + G_{ALU} + G_{Regsiter}$
Functional Flexibility	Yes
Function Expandability	Yes

4-bit Parallel Multiplier

Booth's Algorithm Multiplier

Course Objectives

- To familiarize with various architectural techniques used in implementing complex logic functions as VLSI chips and to achieve various design objectives such as to meet high performance; low cost, high throughput, low-power or a combination thereof
- The course covers the architectural techniques and design methods used for designing programmable processors (CISC, RISC Processors).

Course Evaluation Components

No	Name	Type	Duration	Weight
EC-1	Quiz-I	Online		5%
	Assignment -1	Verilog based Arithmetic block design		15%
	Assignment-II	Sample Processor Design:		10%
EC-2	Mid-Semester Test	Closed Book	2 hours	30%
EC-3	Comprehensive Exam	Open Book	3 hours	40%

Thank you