

Advanced VLSI Design: 2021-22 Lecture 2 Sequential Circuits: Latch and Flip-flops

By Dr. Sanjay Vidhyadharan

ELECTRICAL

Combinational vs. Sequential Circuits

Latch vs. Flip-flop

- Latch: Level sensitive
 - a.k.a. transparent latch, D latch
- Flip-flop: edge triggered
 - A.k.a. master-slave flip-flop, D flip-flop, D register
- Timing Diagrams
 - Transparent
 - Opaque
 - Edge-trigger

Latch

Storing 1

Stores 1 as Long as Power Supply is Provided

Latch

Storing 0

Stores 0 as Long as Power Supply is Provided

Latch

How to Write Data into a Latch?

We are going to use this property of NOR and NAND to write data into the latch

S	R	Q	\overline{Q}
0	0	Q	$\overline{m{Q}}$
0	1	0	1
1	0	1	0
1	1	0	0

S	R	Q	\overline{Q}
0	0	Q	$\overline{m{Q}}$
0	1	0	1
1	0	1	0
1	1	0	0

S	R	Q	\overline{Q}
0	0	Q	$\overline{m{Q}}$
0	1	0	1
1	0	1	0
1	1	0	0

S	R	Q	\overline{Q}
0	0	Q	$\overline{m{Q}}$
0	1	0	1
1	0		0
1		0	0

No change

Reset Q = 0

Set Q = 1

Forbidden

SR Latch with NOR Gates

(a) Schematic diagram

(b) Logic symbol

(c) Characteristic table

SR Latch with NAND Gates

S'	R'	Q	Q'
0	0	1	1
0	1	1	0
1	0	0	1
1	1	Q	Ŷ

Forbidden

Set

Reset

No change

Clocked SR Latch

NAND Implementation

AND-NOR Implementation

Clocked SR Latch

Static D latch

Mux Based Latch

Mux Based Latch

Multiplexer-based NMOS latch using NMOS-only pass transistors.

(b) Non-overlapping clocks

Race around in Latches

Latch vs. Flip-flop

Latch – Responds to change in level of clock pulse

The key to the proper operation of a flip-flop is to trigger it only during signal transition.

Timing Constraints of a Flip-flop

Master-slave positive edge-triggered register using multiplexers.

The set-up time is equal to $3*t_{pd_inv} + t_{pd_tx}$

Hold time is Nil

Propagation delay =

Set-up time simulation

Simulation of propagation delay

Reduced load clock load static master-slave register.

The penalty for the reduced clock load is increased design complexity. The transmission gate (T_1) and its source driver must overpower the feedback inverter (I_2) to switch the state of the cross-coupled inverter.

The transistors of inverter I_2 should be made weaker. This can be accomplished by making their channel-lengths larger than minimum.

When the clock goes high, the slave stage should stop sampling the master stage output and go into a hold mode. However, since CLK and CLK are both high for a short period of time (the overlap period), both sampling pass transistors conduct and there is a direct path from the D input to the Q output. As a result, data at the output can change on the rising edge of the clock, which is undesired for a negative edge- triggered register.

Two-phase non-overlapping clocks

Single Phase Global Clock Generation

Non-overlapping Clock Generation

Solving the leakage problem using multiple-threshold CMOS.

- > During normal mode of operation, the sleep devices are tuned on.
- ➤ The shaded inverters and transmission gates are implemented in low-threshold devices.

Thank you