

Digital Design: 2021-22 Lecture 3: Number System Part 2

By Dr. Sanjay Vidhyadharan

Number System

Previous Class

- > Decimal System
- > Binary System
- > Octal System
- > Hexadecimal System
- > Conversion from one system to other

- Signed Magnitude
- Diminished radix complement
- Radix complement

_

Signed Magnitude	3-bit numbers	Signed magnitude
Limitations	000	+0
1 T 7	0 0 1	+1
1. Two Zeros	0 1 0	+2
2. Add +2 & -1	011	+3
010	100	-0
101	1 0 1	-1
111	110	-2
	111	-3

MSB indicates Sign: 0 indicates positive, 1 indicates negative

Diminished radix complement

Given a number N in base r having n digits (r-1)'s complement is defined as (rⁿ-1-N)

In case of decimal it is called 9's complement

9's complement of 865 is
$$10^3 - 1 - 865 = 999 - 865 = 134$$

In case of binary it is called 1's complement for 1011

1's complement of 1011 is
$$2^4 - 1 - 1011 = 1111 - 1011 = 0100$$

$$2^4$$
-1-1011 = 1111-1011 = 0100
(or you can simply use the complement ~ 1 for 0 and 0 for 1)

Decimal	S.M.	1's comp.
7	0111	0111
6	0110	0110
5	0101	0101
4	0100	0100
3	0011	0011
2	0010	0010
1	0001	0001
0	0000	0000
-0	1000	1111
-1	1001	1110
-2	1010	1101
-3	1011	1100
-4	1100	1011
-5	1101	1010
-6	1110	1001
-7	1111	1000
-8	· —	_

Limitations of 1's Complement

- > Two Zeros
- > End-around-carry-bit addition

Examples of 1's Complement

Decimal	S.M.	1's comp.
7	0111	0111
6	0110	0110
5	0101	0101
4	0100	0100
3	0011	0011
2	0010	0010
1	0001	0001
0	0000	0000
-0	1000	1111
-1	1001	1110
-2	1010	1101
-3	1011	1100
-4	1100	1011
-5	1101	1010
-6	1110	1001
-7	1111	1000
-8	> -	_

Examples of 1's Complement

Decimal	S.M.	1's comp.
7	0111	0111
6	0110	0110
5	0101	0101
4	0100	0100
3	0011	0011
2	0010	0010
1	0001	0001
0	0000	0000
-0	1000	1111
-1	1001	1110
-2	1010	1101
-3	1011	1100
-4	1100	1011
-5	1101	1010
-6	1110	1001
-7	1111	1000
-8	-	_

	E.g. 4	+ 1				1
	0		1		0	0
	0		0		0.0	1
	0		1	\sim	0	1
	E.g. 4	-1	2		•	
		0		1	0	0
		1		1	1	0
	1	0		0	1	0
						1
D	.)	0		0	1	1
	E.g. 1	- 4				
	0		0		0	1
	1		0		1	1
	1		1		0	0

Limitations of 1's Complement

- > Two Zeros
- > End-around-carry-bit addition

Radix complement

Given a number N in base r having n digits r's complement is defined as (rⁿ-N)

In case of decimal it is called 10's complement

$$10^3 - 865 = 1000 - 865 = 135$$

10's complement = 9's complement + 1

In case of binary it is called 2's complement

2's complement of 1011 is

$$2^4 - 1011 = 10000 - 1011 = 0101$$

2's complement = 1's complement + 1

Decimal	S.M.	1's comp.	2's comp.
7	0111	0111	0111
6	0110	0110	0110
5	0101	0101	0101
4	0100	0100	0100
3	0011	0011	0011
2	0010	0010	0010
1	0001	0001	0001
0	0000	0000	0000
-0	1000	1111	- 11
-1	1001	1110	1111
-2	1010	1101	1110
-3	1011	1100	1101
-4	1100	1011	1100
-5	1101	1010	1011
-6	1110	1001	1010
-7	1111	1000	1001
-8	-	-	1000

Advantages of 2's Complement

- One Zero
- ➤ No End-around-carry-bit addition

Add 4 & -7	Add 4 & -3
0100	0100
<u>1001</u>	<u>1101</u>
1101	$1 \overline{0001}$

Examples of 2's Complement

Decimal	S.M.	1's comp.	2's comp.
7	0111	0111	0111
6	0110	0110	0110
5	0101	0101	0101
4	0100	0100	0100
3	0011	0011	0011
2	0010	0010	0010
1	0001	0001	0001
0	0000	0000	0000
-0	1000	1111	-:(0
-1	1001	1110	1111
-2	1010	1101	1110
-3	1011	1100	1101
-4	1100	1011	1100
-5	1101	1010	1011
-6	1110	1001	1010
-7	1111	1000	1001
-8	_	_	1000

EX-OR Gate

EX-OR Gate As Buffer and Inverter

Control	Α	F
0	0	0 Pass
0	1	1 5 635
1	0	1 Invert
1	1	0 Tillvert

Implementation of Adder Subtractor

Advantages of 2's Complement

> Easy Implementation: Adder Subtractor M=0 adder, M=1 Subtractor

Implementation of Adder Subtractor

Overflow in 2's Complement

Decimal	2's comp.
7	0111
6	0110
5	0101
4	0100
3	0011
2	0010
1	0001
0	0000
-0	_
-1	1111
-2	1110
-3	1101
-4	1100
-5	1011
-6	1010
-7	1001
-8	1000

Thank you