

Microprocessors and Interfaces: 2021-22 Lecture 21 : Interrupts

By Dr. Sanjay Vidhyadharan

sanis

Interrupts vs. Polling

Types of 8086 Interrupts

8086 Interrupts

8086 Interrupts

Hardware Interrupts : Interrupt pins and timing

x86 Interrupt Pins

- INTR: Interrupt Request. Activated by a peripheral device to interrupt the processor.
 - Level triggered. Activated with a logic 1.
- /INTA: Interrupt Acknowledge. Activated by the processor to inform the interrupting device that the interrupt request (INTR) is accepted. (IF Checked)
 - Level triggered. Activated with a logic 0.
- NMI: Non-Maskable Interrupt. Used for major system faults such as parity errors and power failures.
 - Edge triggered. Activated with a positive edge (0 to 1) transition.
 - Must remain at logic 1, until it is accepted by the processor.
 - Before the 0 to 1 transition, NMI must be at logic 0 for at least 2 clock cycles.
 - INT 02h

8086 Vector Table

INT 0

Interrupt Sub-Routine (ISR)

256 Interrupts Of 8086 are Divided in To 3 Groups

1. Type 00 to Type 04 interrupts-

. interrup These are used for fixed operations and hence are called dedicated interrupts

2. Type 05 to Type 31 interrupts Preserved for Higher processors

3. Type 32 to Type 255 interrupts

san

Available for user, called user defined interrupts these can be H/W interrupts and activated through INTR line or can be S/W interrupts. [E.g. int 21 : 34th interrupt in vector Table or Type 33]

Processing of an Interrupt by the 8086

- 1. It decrements the stack pointer by 2 and pushes the flag register on the stack.
- 2. It disables the 8086 INTR interrupt input by clearing the interrupt flag in the flag register.
- 3. It resets the trap flag in the flag register.
- 4. It decrements the stack pointer by 2 and pushes the current code segment register contents on the stack.
- 5. It decrements the stack pointer again by 2 and pushes the current instruction pointer contents on the stack.

Soft Interrupts 8086

Bus Cycle

Instruction Cycle

Machine Cycle

Machine Cycle

Bus Cycle

Instruction Cycle

Has more than 1 Machine Cycles

CPU - Instruction Cycle / Machine Cycle.

The CPUs instruction cycle is executed sequentially and each instruction is processed by CPU which consist of following steps :

- Read an Instruction from memory .
- Decode the instruction as per OPCODE
- Find the address of operand .
- Retrieve an operand.
- Perform the desired operation
- Find the address of destination memory .
- Store the result into the destination memory
 www.learncomputerscienceonline.com

T states

8086 Memory Interface

