
Microprocessors and Interfaces: 2021-22

Lab 11

Program to Display numbers in 

LED Display

By Dr. Sanjay Vidhyadharan



2

LED Display in Emulator

• A LED display is available in EMU8086 with port address 199.

• It consists of 5 LED based display which can be used to show a number

(both positive and negative).

• The display number can be provided using any 8086 ALP or using a

simple loop.

Port Address

Display number 

using LED array



3

ALP for LED based Display

#start=led_display.exe#

#make_bin#

name "led" 

mov ax,0

out 199,ax

mov ax, zzzzz

out 199, ax

mov ax, vwxyz

out 199, ax

Eternal loop to write values to port:

mov ax, yy

x1:

out 199, yy

inc zz

jmp yy

hlt

Initializes the virtual LED display

Store an arbitrary positive number in AX and send it IO 

Load 0 in the display

Start from 0. Each step increases one value and load the

updated number in the LED display. Continue to increase

the value.

Store an arbitrary negative number in AX and send it IO 

Initialize AX by 0.



4

#make_com# - the oldest and the simplest format of an executable
file, such files are loaded with 100h prefix (256 bytes). Select Clean
from the New menu if you plan to compile a COM file. Compiler
directive ORG 100h should be added before the code. Execution always
starts from the first byte of the file. This file type is selected
automatically if org 100h directive is found in the code.
supported by DOS and Windows Command Prompt.

#make_exe# - more advanced format of an executable file. not limited
by size and number of segments. stack segment should be defined in the
program. you may select exe template from the new menu in to create
a simple exe program with pre-defined data, stack, and code segments.
the entry point (where execution starts) is defined by a programmer. this
file type is selected automatically if stack segment is found. supported
by dos and windows command prompt.

The output file type directives



5

#make_bin# - a simple executable file. You can define the values of all
registers, segment and offset for memory area where this file will be
loaded. When loading "MY.BIN" file to emulator it will look for a
"MY.BINF" file, and load "MY.BIN" file to location specified in
"MY.BINF" file, registers are also set using information in that file (open
this file in a text editor to edit or investigate). in case the emulator is
not able to find "MY.BINF" file, current register values are used and
"MY.BIN" file is loaded at current CS:IP. the execution starts from
values in CS:IP. bin file type is not unique to the emulator, however the
directives are unique and will not work if .bin file is executed outside of
the emulator because their output is stored in a separate file
independently from pure binary code.

.BINF file is created automatically if assembler finds any of the
following directives.

The output file type directives



6

Thankyou


