

Digital Design

Lecture 5: Two and Three Variable K-Maps

Why to use K-Maps?

Complexity of implementation related to expression

Truth table unique but many algebraic forms

Boolean expressions can be simplified by algebraic means

Algebraic method lacks specific rules

K-map method simple, straight forward and pictorial understanding

K-Maps

A K-map made up of squares, each square represents a minterm/maxterm

Number of squares depend on number of input anaram. combinations

Modified form of Truth Tables

Simplified expressions are in two of the standard forms

8/24/2021

Truth-table to K-map

Representation of cells

One bit variation between adjacent cells

What is the importance of 1-bit variation??

Simplification

X	Υ	F
0	0	1
0	1	1
1	0	0
1	1	0

$$X'Y' + X'Y = X'(Y' + Y) = X'$$

If there are 1's in adjacent cells then they can be grouped and Minimized functions can be obtained

Simplification

X	Υ	F
0	0	1
0	1	1
1	0	0
1	1	0

 \Rightarrow 0 constant Y varies from 0 \rightarrow 1

Simplification

X	Υ	F
0	0	0
0	1	0
1	0	1
1	1	1

1 constant Y varies from 0 -> 1

Simplification

X	Y	F
0	0	1
0	1	1
1	0	1
1	1	1

$$X' + X = 1$$

Simplification

Х	Υ	Н
0	0	1
0	1	1
1	0	1
1	1	1

Adjacent cells can be grouped

2- cells at a time

4- cells at a time

Simplification

Х	Υ	F	✓ Y	0	
0	0	1	X		
0	1	0		1	
1	0	1	iadh'a'	1	
1	1	1	idh 1		
		• •	F = X + Y'		

**A term can be grouped multiple times if it helps in simplifying the expression

Х	Υ	Z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Y	Z			
\	00	01	11	10
	(0,0,0)	(0,0,1)	(0,1,1)	(0,1,0)
U	m_0	$m_{\scriptscriptstyle 1}$	m_3	m_2
1	(1,0,0)	(1,0,1)	(1,1,1)	(1,1,0)
<u> </u>	m_4	$\mathbf{m}_{\scriptscriptstyle{5}}$	m_7	$m_{\scriptscriptstyle{6}}$

Should the next entry be (0, 1, 0)?

$$(0,0,1) \rightarrow (0,1,0)$$

**Two bit variation here, what to do ??

Adjacent Cells

Any more adjacent cells ??

F = XY + YZ + XZ

X	Υ	Z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$F(X,Y,Z) = \sum (0,2,4,5,6)$$

X	Υ	Z	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

$$F(X,Y,Z) = \sum (0,2,4,5,6)$$

X	Υ	Z	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

$$F(X,Y,Z) = \sum (2,3,4,5)$$

X	Υ	Z	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Y	<u>Z</u>			
V	00	01	11	10
0	0	0	1	1
: 44	1	1	0	0
~11U1-				

$$F = XY' + X'Y$$

$$F(X,Y,Z) = \sum (3,4,6,7)$$

2- cells or 4-cells or 8-cells at a time

X	Υ	Z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Y	Z 00	01	11	:0	10
0	0	0	1		0
414	1	0	1		1

Is the third grouping necessary?

All ones should get covered atleast once

If all of them are covered then there is no need to group them again

$$F(X,Y,Z) = \sum (3,4,6,7)$$

2- cells or 4-cells or 8-cells at a time

X	Υ	Z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

$$F = YZ + XZ'$$
 $F = YZ + XZ' + XZ'$

Both expressions will result in same truth table

But only first expression is minimized

Simplification

X	Υ	F	Y	O	1
0	0	1	X		
0	1	0		1	0
1	0	1	iadha,	1	1
1	1	1	idh) 1		
	~ Y	Sir	F = X + Y'	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	

A term can be grouped multiple times if it helps in simplified expression

Simplification

Х	Υ	F
0	0	1
0	1	0
1	0	1
1	1	1

Which of the two is a minimized function ??

$$F(X,Y,Z) = \pi (0,1,2,5)$$

X	Υ	Z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

$$F(X,Y,Z) = \pi(2,3,4,5)$$

X	Υ	Z	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

$$F = (X+Y)(X'+Y')$$

Next Class

4/5-variable K-map

K-map with don't care conditions

