

aran.m Digital Design Lecture 4: Boolean algebra Sanjayvidh

Postulates of Boolean Algebra

1.
$$x + 0 = x$$

$$2. x + x' = 1$$

3.
$$x + y = y + x$$

$$4. x(y+z) = xy + xz$$

Duality Principle

1.
$$x + 0 = x$$

2. $x + x' = 1$

3. $x + y = y + x$

1. $(OR) \rightarrow (AND)$

1. $(AND) \rightarrow (OR)$

1. $(AND) \rightarrow (OR)$

$$.(AND) \rightarrow + (OR)$$

$$1 \rightarrow 0$$

$$0 \rightarrow 1$$

Applying Duality

1.
$$x + 0 = x$$

$$2. x + x' = 1$$

3.
$$x + y = y + x$$

3.
$$x + y = y + x$$

4. $x(y+z) = xy + xz$
 $x + (y,z) = xy + xz$

$$x. 1 = x$$

$$x. 1 = x$$

$$x. x' = 0$$

$$x. y = y. x$$

$$x + (y.z) = (x + y).(x + z)$$

Some important Theorems

1.
$$x + x = x$$

$$2. (x')' = x$$

2.
$$(x')' = x$$

3. $x + (y + z) = (x + y) + z$
 $x \cdot (y \cdot z) = (x + y)' - x'$

$$x \cdot x = x$$

$$x.(y.z) = (x.y).z$$

$$4. (x + y)' = x'y'$$

DeMorgan's Th.
$$(x, y)' = x' + y'$$

$$4. \ x + xy = x$$

$$x.(x + y) = x$$

Theorems can be proved in two ways

-using Postulates

$$x + xy = x$$

$$LHS = x. 1 + xy$$

$$= x. (1 + y)$$

Theorems can be proved in two ways

-using Truth tables

Consists of binary variables, constants and Logic symbols

$$F1 = x + yz'$$

$$F2 = (x + yz')'$$

Single variable in normal or complemented form - literal

Can be transformed into circuit

Boolean function can be represented by truth table in only one way

X	у	Z	F1	F2
0	0	0	0	1
0	0	1	0	1
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

$$F1 = x + yz'$$

$$F2 = (x + yz')'$$

Boolean function can be represented in many ways in algebraic form

$$F2 = (x + yz')'$$

Both represent same function?

$$F2 = x'yz' + x'yz + xz'$$

Implementation of both same? Try it out

Need for simplification

Ways of simplification

-QM(Quine-McCluskey)-Method

Algebraic manipulation done using postulates and theorems

For example:
$$F1 = x(x' + y)$$
 1 Not, 1 OR, 1 AND

 $F1 = xx' + xy$ 1 AND

Canonical Forms-Type1

X	у	F1
0	0	0
0	1	0
1	0	0
1	1	1

F1 = xy	+	F2 =	x'y'

X	у	F2
0	0	1
0	1	0
1	0	0
1	1	0

4	1 1 NOVO			
a id	X	у		F3
ial''	0	0		1
~ 200	0	1		0
50.	1	0		0
	U	1		1

$$F3 = ??$$

$$F3 = xy + x'y'$$

Each input entry will be represented by a term

Canonical Forms-Type2

Х	у	F1
0	0	0
0	1	1
1	0	1
1	1	1

$$F1 = x + y \cdot F2 = x' + y' \begin{vmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix}$$

$$F3 = ??$$

$$F3 = (x + y).(x' + y')$$

F2

0

Each input entry will be represented by a term

Some important Theorems

1.
$$x + x = x$$

$$2. (x')' = x$$

2.
$$(x')' = x$$

3. $x + (y + z) = (x + y) + z$
 $x \cdot (y \cdot z) = (x + y)' - x'$

$$x \cdot x = x$$

$$x.(y.z) = (x.y).z$$

4.
$$(x+y)'=x'y'$$
 DeMorgan's Th. $(x,y)'=x'+y'$

Theorems can be proved in two ways

-using Truth tables

Consists of binary variables, constants and Logic symbols

$$F1 = x + yz'$$

$$F2 = (x + yz')'$$

Single variable in normal or complemented form - literal

Can be transformed into circuit

Boolean function can be represented by truth table in only one way

х	у	Z	F1	F2	
0	0	0	0	1	4 1
0	0	1	0	1	3
0	1	0	1	0	20
0	1	1	0	1	
1	0	0	1	0	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	0	

$$F1 = x + yz'$$

$$F2 = (x + yz')'$$

Boolean function can be represented in many ways in algebraic form

$$F2 = (x + yz')'$$

Both represent same function

$$F2 = x'y'z' + x'y'z + x'z$$

Implementation of both same? Try it out

Need for simplification

Algebraic manipulation done using postulates and theorems

For example:
$$F1 = x(x' + y)$$
 1 Not, 1 oR, 1 AND

 $F1 = xx' + xy$ 1 AND

Before learning

-QM(Quine-McCluskey) Method

Canonical and standard forms of Boolean functions

Canonical Forms-Type1

X	у	F1
0	0	0
0	1	0
1	0	0
1	1	1

Π4	1.0	EO	, , ,
F1 = xy	_	FZ =	$x^{\prime}y^{\prime}$

Х	y	F2
0	0	1
0	1	0
1	0	0
1	1	0

	indica			
A À	X	у		F3
iaV"	0	0		1
~ 200	0	1		0
50.	1	0		0
	1	1		1

$$F3 = ??$$

$$F3 = xy + x'y'$$

Each input entry will be represented by a term

Canonical Forms-Type2

Х	у	F1
0	0	0
0	1	1
1	0	1
1	1	1

$$F1 = x + y \cdot F2 = x' + y' \begin{vmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix}$$

$$F3 = ??$$

$$F3 = (x + y).(x' + y')$$

F2

0

Each input entry will be represented by a term

Canonical forms from Truth table

X	У	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Sum of Products Representation?

Product of Sums Representation?

Can we convert from one canonical form to another?

х	У	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$F = m_1 + m_2 + m_4 + m_7$$

(Three variables - 0,1,2,3,4,5,6,7)

$$F = M_0. M_3. M_5. M_6$$

Minterm and Maxterm are Complementary to each other

х	У	Z	F	F'
0	0	0	0	1
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	0

$$F = m_1 + m_2 + m_4 + m_7$$

$$F' = m_0 + m_3 + m_5 + m_6$$

$$F' = x'y'z' + x'yz + xy'z + xyz'$$

$$F = (F')'$$

$$F = (x'y'z' + x'yz + xy'z + xyz')'$$

$$F = (x'y'z')' \cdot (x'yz)' \cdot (xy'z)' \cdot (xyz')'$$

$$F = (x + y + z).(x + y' + z').(x' + y + z').(x' + y' + z)$$

$$F = M_0. M_3. M_5. M_6$$

Express in minterms:

Example 1:
$$F = y + x'yz'$$

$$F = y(x + x')(z + z') + x'yz'$$
Simplify
$$F = xyz + xyz' + x'yz + x'yz' + x'yz'$$

$$F = m_7 + m_6 + m_3 + m_2$$

Express in minterms:

Example 1: F = y + x'yz'

X	У	Z	x'yz'
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

F	
0	
0	
1	
1	
0	
0	
1	
1	

$$F = M_0.M_1..M_4.M_5$$

Standard Form – Terms that form the function may contain one, two or many literals

$$F1 = y' + xy + x'yz'$$

Sum of Products

$$F2 = x(y' + z).(x + y + z')$$
 Product of Sums

How is it different from canonical form ??

Some times standard forms result in better implementation

$$F = xy + w(y + z)$$

$$F = xy + wy + wz$$

Standard Form

SPOT THE DIFF ??

Thank Youaran.in sanjay Vidhyadharan.in