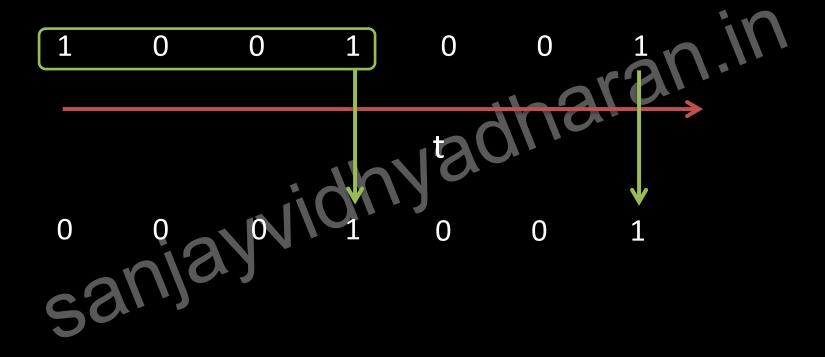
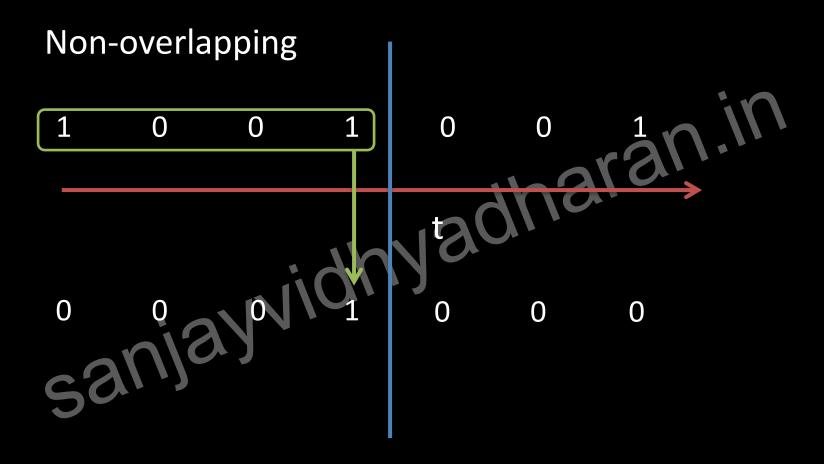


Lecture 19: Sequence Detector. in sanja: Widhyadhar adhar sanja: Widhyadhar sanja: W

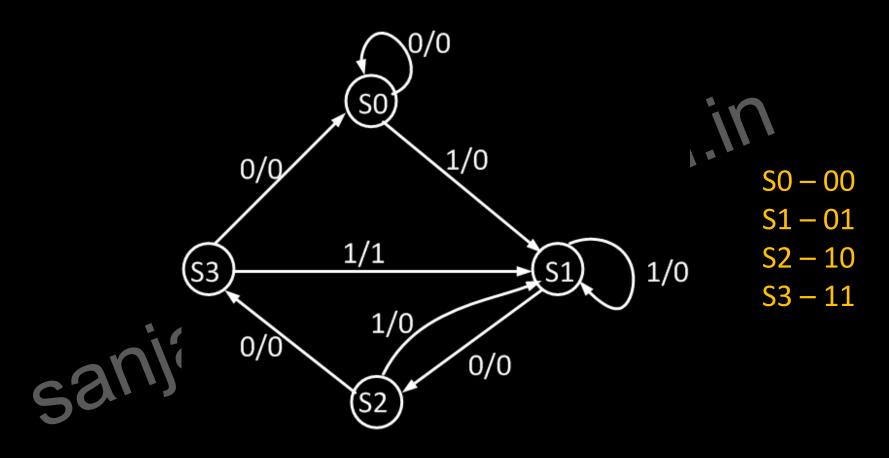

Design of sequence detector (1001)

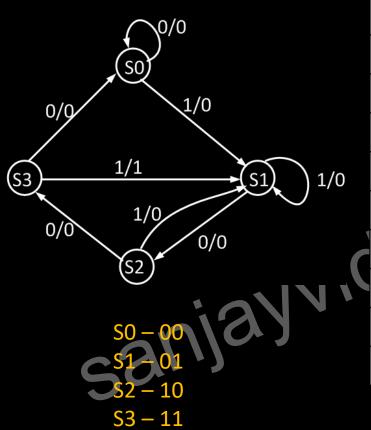
Bit stream as input



Design of sequence detector (1001)

Overlapping


Design of sequence detector (1001)


Design of sequence detector overlapping (1001)

Design of sequence detector overlapping (1001)

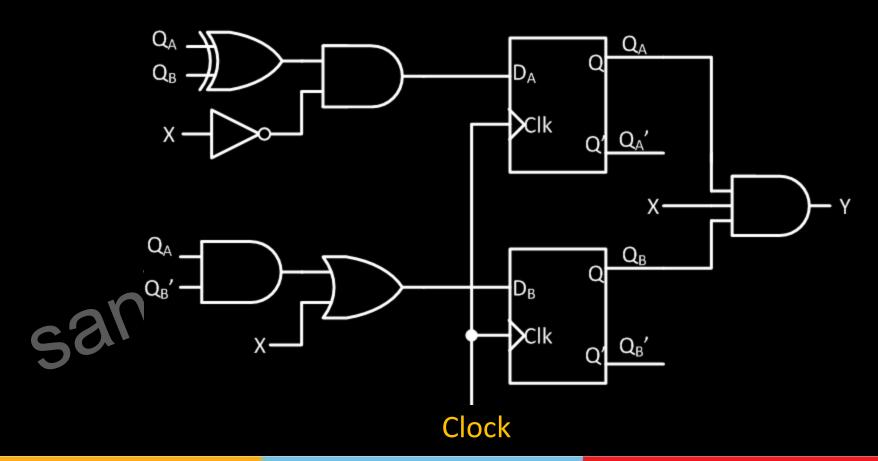
Design of sequence detector overlapping (1001)

Present State		in	Next State			Out	
	\mathbf{Q}_{A}	Q_{B}	Х		Q _{A(t+1)}	Q _{B(t+1)}	Υ
S0	0	0	0	S0	0	0	0
S0	0	0	1	S1	0	1	0
S1	0	1	0	S2	1	0	0
S1	0	1	1	S1	0	1	0
S2	1	0	0	S 3	1	1	0
S2	1	0	1	S1	0	1	0
S 3	1	1	0	SO	0	0	0
S 3	1	1	1	S1	0	1	1

Present State		in	Next State			Out	
	\mathbf{Q}_A	\mathbf{Q}_{B}	Х		$Q_{A(t+1)}$	Q _{B(t+1)}	Υ
S0	0	0	0	S0	0	0	0
S0	0	0	1	S1	0	1	0
S1	0	1	0	S2	1	0	0
S1	0	1	1	S1	0	1	0
S2	1	0	0	S 3	1	1	0
S2	1	0	1	S1	0	1	0
S 3	1	1	0	S0	0	0	0
S 3	1	1	1	S 1	0	1	1

D_A	D _B
0	0
0	1
1	0
0	1
1	1
0	1
0	0
0	1

$$D_A = Q_A'Q_BX' + Q_AQ_B'X'$$


$$D_B = X + Q_A Q_B'$$

$$Y = Q_A Q_B X$$

$$D_A = Q_A'Q_BX' + Q_AQ_B'X' = (Q_A \oplus Q_B) X'$$

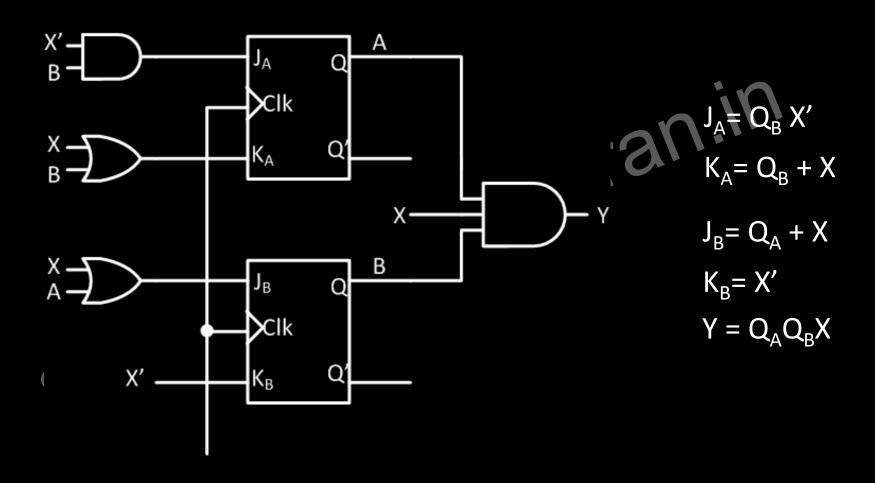
$$Y = Q_AQ_BX$$

$$D_B = X + Q_AQ_B'$$

Present State		in		Next State			
	\mathbf{Q}_{A}	\mathbf{Q}_{B}	Х		$Q_{A(t+1)}$	$Q_{B(t+1)}$	Υ
S0	0	0	0	S0	0	0	0
S0	0	0	1	S1	0	1	0
S1	0	1	0	S2	1	0	0
S1	0	1	1	S1	0	1	0
S2	1	0	0	S 3	1	1	0
S2	1	0	1	S1	0	1	0
S 3	1	1	0	S0	0	0	0
S 3	1	1	1	S 1	0	1	1

J _A	K _A
0	X
0	Х
1	X
0	Х
Χ	0
X	1
Χ	1
Х	1

	J _B	K _B
	0	Χ
. 1	1	Х
.\	Х	1
	Χ	0
	1	Х
	1	Χ
	X	1
	X	0


$$J_A = Q_B X'$$

$$J_A = Q_B X' \qquad K_A = Q_B + X$$

$$J_B = Q_A + X K_B = X'$$

$$Y = Q_A Q_B X$$

Design of sequence detector overlapping (1001)- JK Flip-flop

Next class

State Reduction

sanjay vidhy adharan.in

sanjayvidhyadharan.in