

Digital Design First Semester 2020-21 Tutorial : 09

Sequence Detector

ELECTRICAL ELECTRONICS

COMMUNICATION

1. Design a 11011 sequence detector using JK flip-flops. Allow overlap. ...ap. inap. inap.

ELECTRICAL

ELECTRONICS

COMMUNICATION

1. Design a 11011 sequence detector using JK flip-flops. Allow overlap.

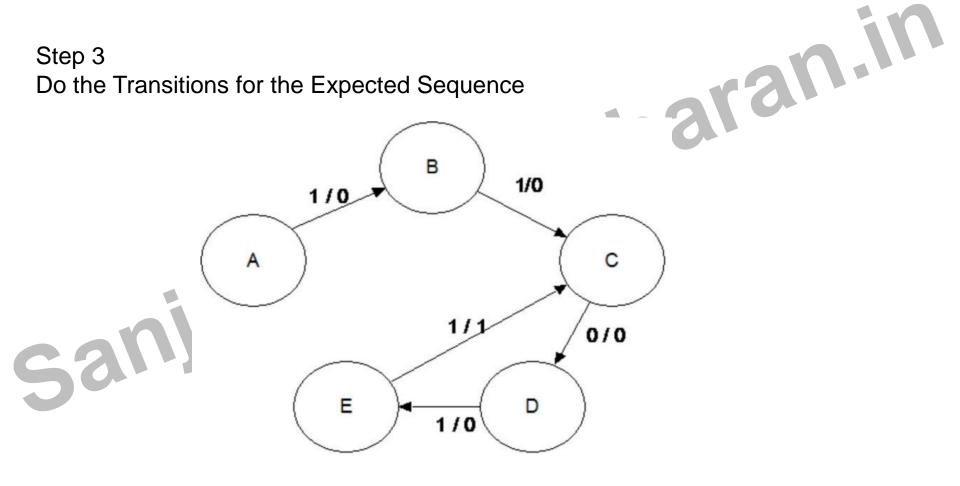
Step 1

We are designing a sequence detector for a 5-bit sequence, so we need 5 states. We label these states A, B, C, D, and E. State A is the initial state.

Step 2

ELECTRICAL

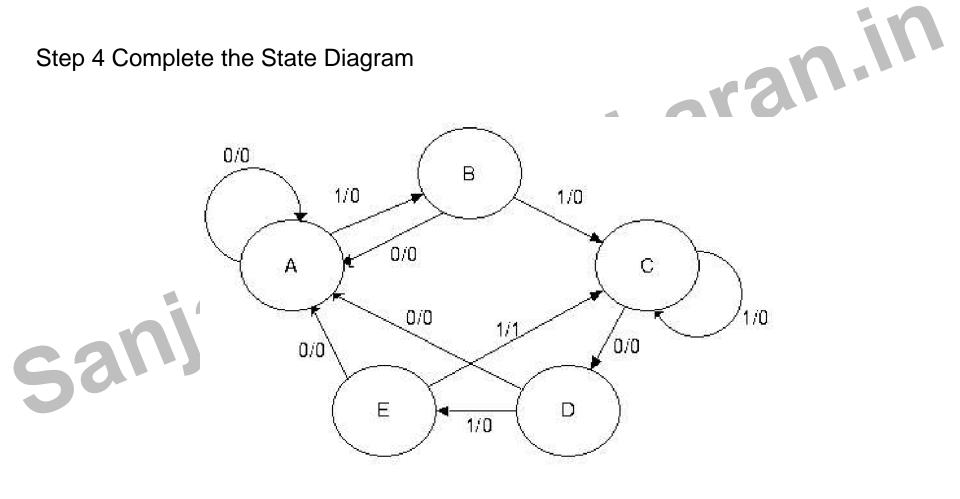
Characterize Each State by What has been Input and What is Expected State


COMMUNICATION

INSTRUMENTATION

State	Has	Awaiting
A		11011
В	1	1011
C	11	011
D	110	11
E	1101	1

ELECTRONICS


1. Design a 11011 sequence detector using JK flip-flops. Allow overlap.

INSTRUMENTATION

ELECTRICAL ELECTRONICS COMMUNICATION

1. Design a 11011 sequence detector using JK flip-flops. Allow overlap.

ELECTRICAL ELECTRONICS

COMMUNICATION

1. Design a 11011sequence detector using JK flip-flops. Allow overlap.

S	tep 5 Make State Table		
	Present State	Next	State / Output
		X = 0	X = 1
	А	A / 0	B / 0
	В	A / 0	C / 0
	С	D / 0	C / 0
	D	A / 0	E / 0
	E	A / 0	C / 1

1. Design a 11011 sequence detector using JK flip-flops. Allow overlap.

Step 6 – Determine the Number of Flip-Flops Required We have 5 states, so N = 5. We solve the equation $2P-1 < 5 \pm 2P$ by inspection, noting that it is solved by P = 3. So we need three flip-flops.

Step 7 – Assign a unique P-bit binary number (state vector) to each state. The simplest way is to make the following assignments

A = 000

B = 001

C = 011 Note that states 010, 110, and 111 are not used.

D = 100

E = 101

Occasionally, a better assignment can be detected by inspection of the next state table. I note that the next states in the table cluster into two disjoint sets for X = 0 and X = 1. For X = 0 the possible next states are A and D For X = 1 the possible next states are B, C, and E. For this reason, I elect to give even number assignments to states A and D, and to give odd number assignments to states B, C, and E.

COMMUNICATION

INSTRUMENTATION

ELECTRICAL

ELECTRONICS

1. Design a 11011 sequence detector using JK flip-flops. Allow overlap.

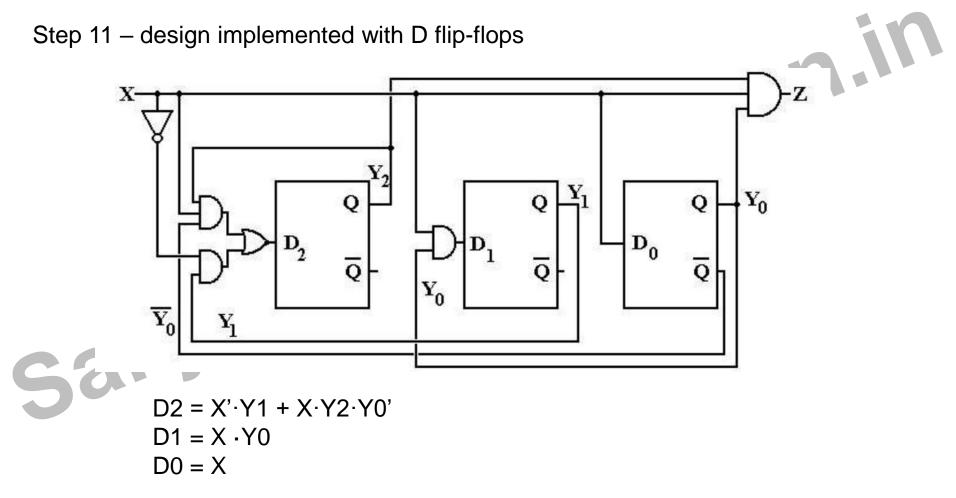
Step 8 – Generate the Transition Table With Output

Present State		Next State / Output				
		$\mathbf{X} = 0$	X = 1			
	Y ₂ Y ₁ Y ₀	Y ₂ Y ₁ Y ₀ / Z	Y ₂ Y ₁ Y ₀ / Z			
А	0 0 0	0 0 0 / 0	0 0 1 / 0			
В	0 0 1	0 0 0 / 0	0 1 1 / 0			
C	0 1 1	1 0 0 / 0	0 1 1 / 0			
D	1 0 0	0 0 0 / 0	1 0 1 / 0			
E	1 0 1	0 0 0 / 0	0 1 1 / 1			

1. Design a 11011 sequence detector using JK flip-flops. Allow overlap.

Step 9 – Separate the Transition Table into Three Tables, One for Each Flip-Flop

Y2			Y1			Y0			
PS	Next State	;	PS	Next State	;	PS	Next State	e	
$Y_2Y_1Y_0$	X = 0	X = 1	$Y_2Y_1Y_0$	X = 0	X = 1	$Y_2Y_1Y_0$	X = 0	X = 1	
000	0	0	000	0	0	000	0	1	
001	0	0	001	0	1	001	0	1	
011	1	0	011	0	1	011	0	1	
100	0	1	100	0	0	100	0	1	
101	0	0	101	0	1	101	0	1	
Match Y	<i>ι</i> Υ	$Y_2 \cdot Y_0$	0	Y ₀		0	1		
52	$\mathbf{V}_{1} \mathbf{Y}_{1} \mathbf{Y}_{2} \mathbf{Y}_{0} \mathbf{U} \mathbf{Y}_{0} \mathbf{U} \mathbf{U} \mathbf{Y}_{0} \mathbf{U} \mathbf{U} \mathbf{U}$								


1. Design a 11011 sequence detector using JK flip-flops. Allow overlap.

Step 10 – Separate the Transition Table into Three Tables, One for Each Flip-Flop

Y2			Y1			Y0		
PS	Next State		PS	PS Next State P		PS	Next State	
$Y_2Y_1Y_0$	X = 0	X = 1	$Y_2Y_1Y_0$	$\mathbf{X} = 0$	X = 1	$Y_2Y_1Y_0$	$\mathbf{X} = 0$	X = 1
000	0	0	000	0	0	000	0	1
001	0	0	001	0	1	001	0	1
011	1	0	011	0	1	011	0	1
100	0	1	100	0	0	100	0	1
101	0	0	101	0	1	101	0	1
Match Y	Y1 Y	$2 \cdot Y_0$	0	Y ₀		0	1	

$$D2 = X' \cdot Y1 + X \cdot Y2 \cdot Y0'$$
$$D1 = X \cdot Y0$$
$$D0 = X$$

1. Design a 11011 sequence detector using JK flip-flops. Allow overlap.

COMMUNICATION

INSTRUMENTATION

ELECTRICAL

1. Design a 11011 sequence detector using JK flip-flops. Allow overlap.

Step 12 – Derive an Input Table for Each JK Flip-Flop using its Excitation Table And Produce the Input Equations for Each Flip-Flop

$Y_2Y_1Y_0$	X = 0			X = 1		
	Y ₂	J ₂	K ₂	Y ₂	J ₂	K ₂
000	0	0	d	0	0	d
001	0	0	d	0	0	d
011	1	1	d	0	0	d
100	0	d	1	1	d	0
101	0	d	1	0	d	1

X = 0X = 1J2 = Y1J2 = 0thus, $J2 = X' \cdot Y1$ K2 = 1K2 = Y0thus, $K2 = X' + X \cdot Y0 = X' + Y0$.

ELECTRICAL

1. Design a 11011 sequence detector using JK flip-flops. Allow overlap.

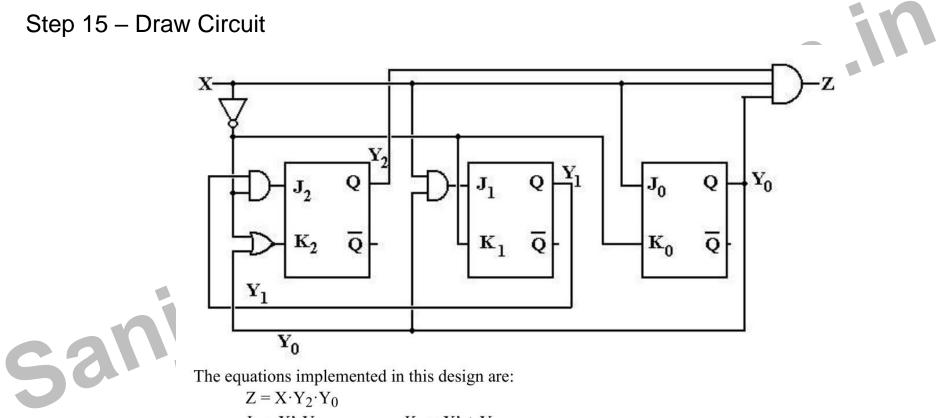
Step 13 – Derive an Input Table for Each JK Flip-Flop using its Excitation Table And Produce the Input Equations for Each Flip-Flop

$Y_2Y_1Y_0$	X = 0			X = 1		
	Y ₁	J ₁	K ₁	Y ₁	J ₁	K ₁
000	0	0	d	0	0	d
001	0	0	d	1	1	d
011	0	d	1	1	d	0
100	0	0	d	0	0	d
101	0	0	d	1	1	d

X = 0	X = 1
J1 = 0	J1 = Y0
K1 = 1	K1 = 0

thus $J1 = X \cdot Y0$ and K1 = X'.

COMMUNICATION


1. Design a 11011 sequence detector using JK flip-flops. Allow overlap.

Step 14 – Derive an Input Table for Each JK Flip-Flop using its Excitation Table And Produce the Input Equations for Each Flip-Flop

$Y_2Y_1Y_0$	X = 0			X = 1		
	Y ₀	J ₀	K ₀	Y ₀	J ₀	K ₀
000	0	0	d	1	1	d
001	0	d	1	1	d	0
011	0	d	1	1	d	0
100	0	0	d	1	1	d
101	0	d	1	1	d	0

thus J0 = X and K0 = X', as expected.

1. Design a 11011 sequence detector using JK flip-flops. Allow overlap.

$$L = X \cdot Y_{2} \cdot Y_{0}$$

$$J_{2} = X' \cdot Y_{1}$$

$$K_{2} = X' + Y_{0}$$

$$J_{1} = X \cdot Y_{0}$$

$$K_{1} = X'$$

$$J_{0} = X$$

$$K_{0} = X'$$

ELECTRICAL

ELECTRONICS

COMMUNICATION