Digital Design
 First Semester 2020-21 Tutorial : 09

Sequence Detector

Digital Design Tutorial : 09

1. Design a 11011 sequence detector using JK flip-flops. Allow overlap.

Digital Design Tutorial : 09

1. Design a 11011 sequence detector using JK flip-flops. Allow overlap.

Step 1
We are designing a sequence detector for a 5 -bit sequence, so we need 5 states. We label these states A, B, C, D, and E. State A is the initial state.

Step 2
Characterize Each State by What has been Input and What is Expected State

State	Has	Awaiting
A	--	11011
B	1	1011
C	11	011
D	110	11
E	1101	1

Digital Design Tutorial : 09

1. Design a 11011 sequence detector using JK flip-flops. Allow overlap.

Step 3
Do the Transitions for the Expected Sequence

Digital Design Tutorial : 09

1. Design a 11011 sequence detector using JK flip-flops. Allow overlap.

Step 4 Complete the State Diagram

Digital Design Tutorial : 09

1. Design a 11011 sequence detector using JK flip-flops. Allow overlap.

Step 5 Make State Table

Present State	Next State / Output	
	$\mathrm{X}=0$	$\mathrm{X}=1$
A	$\mathrm{~A} / 0$	$\mathrm{~B} / 0$
B	$\mathrm{~A} / 0$	$\mathrm{C} / 0$
C	$\mathrm{D} / 0$	$\mathrm{C} / 0$
D	$\mathrm{A} / 0$	$\mathrm{E} / 0$
E	$\mathrm{A} / 0$	$\mathrm{C} / 1$

Digital Design Tutorial : 09

1. Design a 11011 sequence detector using JK flip-flops. Allow overlap.

Step 6 - Determine the Number of Flip-Flops Required We have 5 states, so $N=5$. We solve the equation $2 \mathrm{P}-1<5 £ 2 \mathrm{P}$ by inspection, noting that it is solved by $\mathrm{P}=3$. So we need three flip-flops.

Step 7 - Assign a unique P-bit binary number (state vector) to each state. The simplest way is to make the following assignments
$A=000$
$B=001$
C $=011$ Note that states 010, 110, and 111 are not used.
D = 100
$E=101$
Occasionally, a better assignment can be detected by inspection of the next state table. I note that the next states in the table cluster into two disjoint sets for $X=0$ and $X=1$. For $X=$ 0 the possible next states are A and D For $X=1$ the possible next states are B, C, and E. For this reason, I elect to give even number assignments to states A and D, and to give odd number assignments to states B, C, and E .

Digital Design Tutorial : 09

1. Design a 11011 sequence detector using JK flip-flops. Allow overlap.

Step 8 - Generate the Transition Table With Output

Present State		Next State / Output	
		$\mathrm{X}=0$	$\mathrm{X}=1$
	$\mathrm{Y}_{2} \mathrm{Y}_{1} \mathrm{Y}_{0}$	$\mathrm{Y}_{2} \mathrm{Y}_{1} \mathrm{Y}_{0} / \mathrm{Z}$	$\mathrm{Y}_{2} \mathrm{Y}_{1} \mathrm{Y}_{0} / \mathrm{Z}$
A	000	0 0 0 / 0	0 0 1 / 0
B	001	0 0 0 / 0	0 1 1 / 0
C	011	$100 / 0$	$\begin{array}{lllll}0 & 1 & 1\end{array}$
D	100	0 0 0 / 0	1 0 1 / 0
E	101	0 0 0 / 0	0 1 1 / 1

Digital Design Tutorial : 09

1. Design a 11011 sequence detector using JK flip-flops. Allow overlap.

Step 9 - Separate the Transition Table into Three Tables, One for Each Flip-Flop

Y2			Y1			Y0		
PS	Next State		PS	Next State		PS	Next State	
$\mathrm{Y}_{2} \mathrm{Y}_{1} \mathrm{Y}_{0}$	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{Y}_{2} \mathrm{Y}_{1} \mathrm{Y}_{0}$	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{Y}_{2} \mathrm{Y}_{1} \mathrm{Y}_{0}$	$\mathrm{X}=0$	$\mathrm{X}=1$
000	0	0	000	0	0	000	0	1
001	0	0	001	0	1	001	0	1
011	1	0	011	0	1	011	0	1
100	0	1	100	0	0	100	0	1
101	0	0	101	0	1	101	0	1
Match		$\mathrm{Y}_{2} \cdot \mathrm{Y}_{0}{ }^{\prime}$	0	Y_{0}		0	1	

Digital Design Tutorial : 09

1. Design a 11011 sequence detector using JK flip-flops. Allow overlap.

Step 10 - Separate the Transition Table into Three Tables, One for Each Flip-Flop

Y2			Y1			Y0		
PS	Next		PS	Next S		PS	Next	
$\mathrm{Y}_{2} \mathrm{Y}_{1} \mathrm{Y}_{0}$	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{Y}_{2} \mathrm{Y}_{1} \mathrm{Y}_{0}$	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{Y}_{2} \mathrm{Y}_{1} \mathrm{Y}_{0}$	$\mathrm{X}=0$	$\mathrm{X}=1$
000	0	0	000	0	0	000	0	1
001	0	0	001	0	1	001	0	1
011	1	0	011	0	1	011	0	1
100	0	1	100	0	0	100	0	1
101	0	0	101	0	1	101	0	1
Match		. $\mathrm{Y}_{0}{ }^{\prime}$	0	Y		0	1	

$$
\begin{aligned}
& D 2=X^{\prime} \cdot Y 1+X \cdot Y 2 \cdot Y O^{\prime} \\
& D 1=X \cdot Y 0 \\
& D 0=X
\end{aligned}
$$

Digital Design Tutorial : 09

1. Design a 11011 sequence detector using JK flip-flops. Allow overlap.

Step 11 - design implemented with D flip-flops

$$
\begin{aligned}
& \mathrm{D} 2=\mathrm{X}^{\prime} \cdot \mathrm{Y} 1+\mathrm{X} \cdot \mathrm{Y} 2 \cdot \mathrm{YO}^{\prime} \\
& \mathrm{D} 1=\mathrm{X} \cdot \mathrm{YO} \\
& \mathrm{D} 0=\mathrm{X}
\end{aligned}
$$

Digital Design Tutorial : 09

1. Design a 11011 sequence detector using JK flip-flops. Allow overlap. Step 12 - Derive an Input Table for Each JK Flip-Flop using its Excitation Table And Produce the Input Equations for Each Flip-Flop

$\mathrm{Y}_{2} \mathrm{Y}_{1} \mathrm{Y}_{0}$	$\mathrm{X}=0$			$\mathrm{X}=1$			
	$\mathrm{Y}_{\mathbf{2}}$	J_{2}	$\mathrm{~K}_{2}$	$\mathbf{Y}_{\mathbf{2}}$	J_{2}	$\mathrm{~K}_{2}$	
$\mathbf{0}$	0	0	0	0	d	0	0
$\mathbf{0} 0$	0	1	0	0	d	0	0
$\mathbf{0}$	1	1	1	1	d	0	d
$\mathbf{1}$	0	0	0	d	1	1	0
$\mathbf{1}$	0	1	0	d	1	0	d

$X=0$	$X=1$	
$J 2=Y 1$	$J 2=0$	thus, $J 2=X^{\prime} \cdot Y 1$
$K 2=1$	$K 2=Y 0$	thus, $K 2=X^{\prime}+X \cdot Y 0=X^{\prime}+Y 0$.

Digital Design Tutorial : 09

1. Design a 11011 sequence detector using JK flip-flops. Allow overlap.

Step 13 - Derive an Input Table for Each JK Flip-Flop using its Excitation Table And Produce the Input Equations for Each Flip-Flop

$\mathrm{Y}_{2} \mathrm{Y}_{1} \mathrm{Y}_{0}$	$\mathrm{X}=0$			$\mathrm{X}=1$		
	$\mathrm{Y}_{\mathbf{1}}$	J_{1}	$\mathrm{~K}_{1}$	$\mathbf{Y}_{\mathbf{1}}$	J_{1}	$\mathrm{~K}_{1}$
$0 \mathbf{0} 0$	0	0	d	0	0	d
0001	0	0	d	1	1	d
$0 \mathbf{1} 1$	0	d	1	1	d	0
$1 \mathbf{0} 0$	0	0	d	0	0	d
$1 \mathbf{0} 1$	0	0	d	1	1	d

$$
\begin{array}{ll}
\mathrm{X}=0 & \mathrm{X}=1 \\
\mathrm{~J} 1=0 & \mathrm{~J} 1=\mathrm{Y} 0 \\
\mathrm{~K} 1=1 & \mathrm{~K} 1=0
\end{array}
$$

thus $\mathrm{J} 1=\mathrm{X} \cdot \mathrm{Y} 0$ and $\mathrm{K} 1=\mathrm{X}$.

Digital Design Tutorial : 09

1. Design a 11011 sequence detector using JK flip-flops. Allow overlap. Step 14 - Derive an Input Table for Each JK Flip-Flop using its Excitation Table And Produce the Input Equations for Each Flip-Flop

$\mathrm{Y}_{2} \mathrm{Y}_{1} \mathrm{Y}_{0}$	$\mathrm{X}=0$			$\mathrm{X}=1$		
	$\mathrm{Y}_{\mathbf{0}}$	J_{0}	$\mathrm{~K}_{0}$	$\mathbf{Y}_{\mathbf{0}}$	J_{0}	$\mathrm{~K}_{0}$
000	0	0	d	1	1	d
$00 \mathbf{1}$	0	d	1	1	d	0
$01 \mathbf{1}$	0	d	1	1	d	0
100	0	0	d	1	1	d
$10 \mathbf{1}$	0	d	1	1	d	0

$X=0$	$X=1$
$J 0=0$	$J 0=1$
$K 0=1$	$K 0=0$

thus $\mathrm{JO}=\mathrm{X}$ and $\mathrm{K} 0=\mathrm{X}^{\prime}$, as expected.

Digital Design Tutorial : 09

1. Design a 11011 sequence detector using JK flip-flops. Allow overlap. Step 15 - Draw Circuit

The equations implemented in this design are:

$$
\begin{aligned}
& \mathrm{Z}=\mathrm{X} \cdot \mathrm{Y}_{2} \cdot \mathrm{Y}_{0} \\
& \mathrm{~J}_{2}=\mathrm{X} \cdot \mathrm{Y}_{1} \\
& \mathrm{~J}_{1}=\mathrm{X} \cdot \mathrm{Y}_{0} \\
& \mathrm{~J}_{0}=\mathrm{X}
\end{aligned}
$$

$$
\mathrm{K}_{2}=\mathrm{X}^{\prime}+\mathrm{Y}_{0}
$$

$$
\mathrm{K}_{1}=\mathrm{X}^{\prime}
$$

$$
\mathrm{K}_{0}=\mathrm{X}^{\prime}
$$

