

Digital Design First Semester 2020-21 Tutorial: 09

Sequence Detector

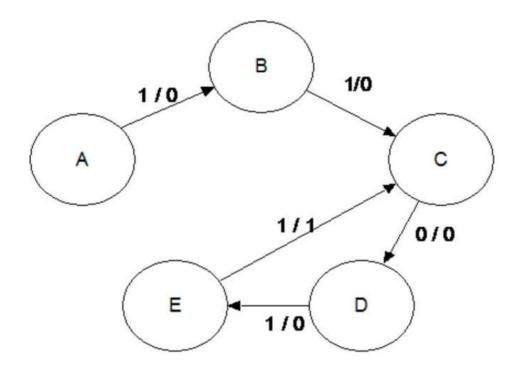
1. Design a 11011 sequence detector using JK flip-flops. Allow overlap.

1. Design a 11011 sequence detector using JK flip-flops. Allow overlap.

Step 1

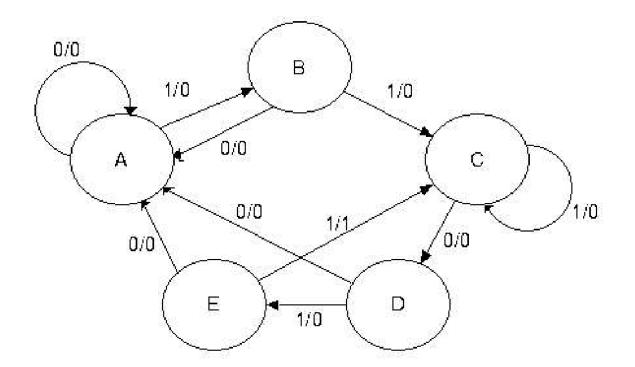
We are designing a sequence detector for a 5-bit sequence, so we need 5 states. We label these states A, B, C, D, and E. State A is the initial state.

Step 2


Characterize Each State by What has been Input and What is Expected State

State	Has	Awaiting
Α		11011
В	1	1011
С	11	011
D	110	11
Е	1101	1

1. Design a 11011 sequence detector using JK flip-flops. Allow overlap.


Step 3
Do the Transitions for the Expected Sequence

1. Design a 11011 sequence detector using JK flip-flops. Allow overlap.

Step 4 Complete the State Diagram

1. Design a 11011sequence detector using JK flip-flops. Allow overlap.

Step 5 Make State Table

Present State	Next State / Output				
	X = 0	X = 1			
A	A / 0	B / 0			
В	A / 0	C / 0			
С	D / 0	C / 0			
D	A / 0	E / 0			
Е	A / 0	C / 1			

1. Design a 11011 sequence detector using JK flip-flops. Allow overlap.

Step 6 – Determine the Number of Flip-Flops Required We have 5 states, so N = 5. We solve the equation 2P-1 < 5 £ 2P by inspection, noting that it is solved by P = 3. So we need three flip-flops.

Step 7 – Assign a unique P-bit binary number (state vector) to each state. The simplest way is to make the following assignments

A = 000

B = 001

C = 011 Note that states 010, 110, and 111 are not used.

D = 100

E = 101

Occasionally, a better assignment can be detected by inspection of the next state table. I note that the next states in the table cluster into two disjoint sets for X = 0 and X = 1. For X = 0 the possible next states are A and D For X = 1 the possible next states are B, C, and E. For this reason, I elect to give even number assignments to states A and D, and to give odd number assignments to states B, C, and E.

Design a 11011 sequence detector using JK flip-flops. Allow overlap.
 Step 8 – Generate the Transition Table With Output

Pres	sent State	Next State	Output
		X = 0	X = 1
	Y ₂ Y ₁ Y ₀	$Y_2Y_1Y_0 / Z$	$Y_2Y_1Y_0 / Z$
A	0 0 0	0 0 0 / 0	0 0 1 / 0
В	0 0 1	0 0 0 / 0	0 1 1 / 0
С	0 1 1	1 0 0 / 0	0 1 1 / 0
D	1 0 0	0 0 0 / 0	1 0 1 / 0
Е	1 0 1	0 0 0 / 0	0 1 1 / 1

1. Design a 11011 sequence detector using JK flip-flops. Allow overlap.

Step 9 – Separate the Transition Table into Three Tables, One for Each Flip-Flop

Y2			Y1			Y0		
PS	Next State		PS	Next State		PS	Next State	
$Y_2Y_1Y_0$	X = 0	X = 1	$Y_2Y_1Y_0$	X = 0	X = 1	$Y_2Y_1Y_0$	X = 0	X = 1
0 0 0	0	0	000	0	0	000	0	1
0 0 1	0	0	0 0 1	0	1	0 0 1	0	1
0 1 1	1	0	0 1 1	0	1	0 1 1	0	1
100	0	1	100	0	0	100	0	1
1 0 1	0	0	101	0	1	101	0	1

Match Y_1 $Y_2 \cdot Y_0$ ' 0 Y_0 0

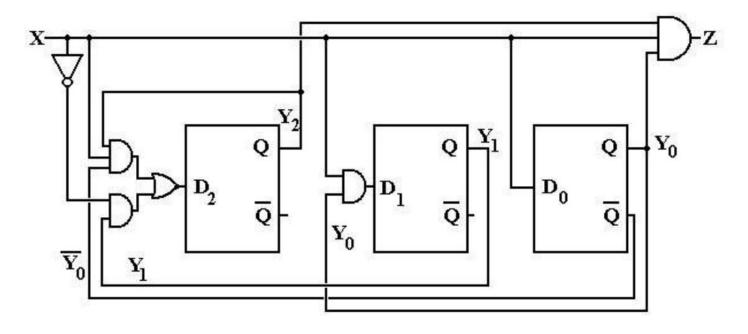
1. Design a 11011 sequence detector using JK flip-flops. Allow overlap.

Step 10 – Separate the Transition Table into Three Tables, One for Each Flip-Flop

Y2			Y1			Y0		
PS	Next State		PS	Next State		PS	Next State	
$Y_2Y_1Y_0$	X = 0	X = 1	$Y_2Y_1Y_0$	X = 0	X = 1	$Y_2Y_1Y_0$	X = 0	X = 1
0 0 0	0	0	000	0	0	000	0	1
0 0 1	0	0	0 0 1	0	1	0 0 1	0	1
0 1 1	1	0	0 1 1	0	1	0 1 1	0	1
100	0	1	100	0	0	100	0	1
1 0 1	0	0	101	0	1	101	0	1

Match Y_1 $Y_2 \cdot Y_0$ ' 0 Y_0 0

$$D2 = X' \cdot Y1 + X \cdot Y2 \cdot Y0'$$


$$D1 = X \cdot Y0$$

$$D0 = X$$

1. Design a 11011 sequence detector using JK flip-flops. Allow overlap.

Step 11 – design implemented with D flip-flops

$$D2 = X' \cdot Y1 + X \cdot Y2 \cdot Y0'$$

$$D1 = X \cdot Y0$$

$$D0 = X$$

1. Design a 11011 sequence detector using JK flip-flops. Allow overlap.

Step 12 – Derive an Input Table for Each JK Flip-Flop using its Excitation Table And Produce the Input Equations for Each Flip-Flop

$Y_2Y_1Y_0$	X = 0			X = 1		
	Y ₂	J_2	K ₂	Y ₂	J_2	K ₂
0 0 0	0	0	d	0	0	d
0 0 1	0	0	d	0	0	d
0 1 1	1	1	d	0	0	d
100	0	d	1	1	d	0
1 0 1	0	d	1	0	d	1

$$X = 0$$

$$X = 1$$

$$J2 = Y1$$

$$J2 = 0$$

thus,
$$J2 = X' \cdot Y1$$

$$K2 = 1$$

$$K2 = Y0$$

thus,
$$K2 = X' + X \cdot Y0 = X' + Y0$$
.

1. Design a 11011 sequence detector using JK flip-flops. Allow overlap.

Step 13 – Derive an Input Table for Each JK Flip-Flop using its Excitation Table And Produce the Input Equations for Each Flip-Flop

$Y_2Y_1Y_0$	X = 0			X = 1		
	\mathbf{Y}_{1}	J_1	K_1	Y ₁	J_1	K ₁
000	0	0	d	0	0	d
0 0 1	0	0	d	1	1	d
0 1 1	0	d	1	1	d	0
1 0 0	0	0	d	0	0	d
1 0 1	0	0	d	1	1	d

$$X = 0$$
 $X = 1$
 $J1 = 0$ $J1 = Y0$
 $K1 = 1$ $K1 = 0$

thus $J1 = X \cdot Y0$ and K1 = X'.

1. Design a 11011 sequence detector using JK flip-flops. Allow overlap.

Step 14 – Derive an Input Table for Each JK Flip-Flop using its Excitation Table And Produce the Input Equations for Each Flip-Flop

$Y_2Y_1Y_0$	X = 0			X = 0 $X = 1$		
	Y ₀	J_0	K_0	$\mathbf{Y_0}$	J_0	K_0
0 0 0	0	0	d	1	1	d
001	0	d	1	1	d	0
011	0	d	1	1	d	0
1 0 0	0	0	d	1	1	d
101	0	d	1	1	d	0

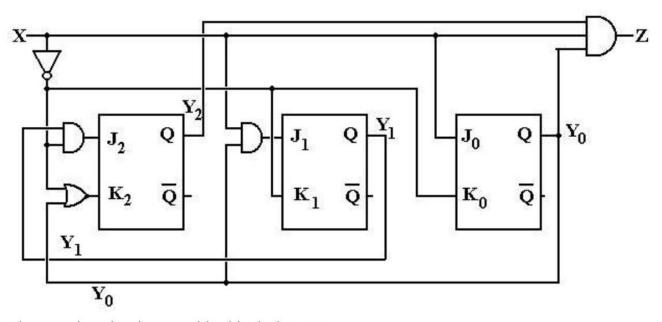
$$X = 0$$

$$X = 1$$

$$J0 = 0$$

$$J0 = 1$$

$$K0 = 1$$


$$K0 = 0$$

thus J0 = X and K0 = X', as expected.

1. Design a 11011 sequence detector using JK flip-flops. Allow overlap.

Step 15 – Draw Circuit

The equations implemented in this design are:

$$Z = X \cdot Y_2 \cdot Y_0$$
$$J_2 = X' \cdot Y_1$$

$$\mathbf{J}_2 = \mathbf{X' \cdot Y}_1 \qquad \qquad \mathbf{K}_2 = \mathbf{X' + Y}_0$$

$$\mathbf{J}_1 = \mathbf{X} \cdot \mathbf{Y}_0 \qquad \qquad \mathbf{K}_1 = \mathbf{X}'$$

$$K_1 = X$$

$$J_0 = X$$

$$K_0 = X'$$