

Digital Design First Semester 2020-21 Tutorial : 10

State Table Reduction

ELECTRICAL

ELECTRONICS

Digital Design Tutorial : 10

1. A sequential circuit has one flip-flop Q, two inputs x and y, and one output S. It consists of a full-adder circuit connected to a D flip-flop, as shown. Derive the state table and state diagram of the sequential circuit.

COMMUNICATION

ELECTRICAL

ELECTRONICS

Digital Design Tutorial : 10

1. A sequential circuit has one flip-flop Q, two inputs x and y, and one output S. It consists of a full-adder circuit connected to a D flip-flop, as shown. Derive the state table and state diagram of the sequential circuit.

COMMUNICATION

FA equations: $S = X \oplus Y \oplus Q$ C = XY + XQ + YQ

<u>Input equation:</u> $D_Q = C$ = XY + XQ + YQ (from the FA equations or from the K-map)

Characteristic equation:

$$Q(t+1) = D = XY + XQ + YQ$$

State equation:

Q(t+1) = C

ELECTRICAL

1.

Digital Design Tutorial : 10

State Table

PRESENT STATE	INPUTS		NEXT STATE	OUTPUT
Q	Х	Y	Q	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

00/1

ELECTRICAL

ELECTRONICS

COMMUNICATION

2. Reduce the number of states in the following table and tabulate the reduced state table.

	NEXT STATE		OUTPUT	
PRESENT STATE	X=0	X=1	X=0	X=1
а	f b 0		0	0
b	d	С	0	0
С	f	е	0	0
d	g	а	1	0
е	d	С	0	0
f	f	b	1	1
g	g	h	0	1
h	g a		1	0

ELECTRICAL

ELECTRONICS

2. Reduce the number of states in the following table and tabulate the reduced state table.

States b,e are the same ,we will replace state e with state b . States d,h are the same ,we will replace state h with state d .

	NEXT STATE		OUTPUT	
PRESENT STATE	X=0	X=1	X=0	X=1
а	f	b	0	0
b	d	С	0	0
С	f	b	0	0
d	g	а	1	0
f	f	b	1	1
g	g	d	0	1

2. Reduce the number of states in the following table and tabulate the reduced state table.

States a,c are the same ,we will replace state c with state a .

	NEXT STATE		OUTPUT	
PRESENT STATE	X=0	X=1	X=0	X=1
а	f	b	0	0
b	d	а	0	0
d	g	а	1	0
f	f	b	1	1
g	g	d	0	1

3. Optimize using Implication Table .

State Table to be Reduced.

Present	Next State		Out	tput
State	x=0	x=1	x=0	x=1
а	d	а	0	0
b	е	а	0	0
С	g	f	0	1
d	а	d	1	0
е	а	d	1	0
f	С	b	0	0
g	а	е	1	0

ELECTRICAL

ELECTRONICS

COMMUNICATION

3. Optimize using Implication Table .

State Table to be Reduced.							
Present	Next	State	Ou	tput			
State	x=0	x=1	x=0	x=1			
а	d	а	0	0			
b	е	а	0	0			
С	g	f	0	1			
d	а	d	1	0			
е	а	d	1	0			
f	С	b	0	0			
g	а	е	1	0			
x	x						
	(d a) a/		v				

State Table to be Deduced

	а	b	С	d	е		f		
g	x	x	X	(d,e) √	(d,e) √		X		
'	(a,b)	(a,b)	^						
f	(c,d)	(c,e)	Y	×	x	Y			
e	x	x	X						
d	X	X	X	<u>g</u>	a	e			
C	X	X		f f	С	b	0		
				е	а	d	1		
b	(d,e) √			d	a	d	1		

ELECTRICAL

Present

3. Optimize using Implication Table .

Reduced State Table.

Next State

				State	x=0	x=1	x=0	x=1
				а	d	а	0	0
.				С	d	f	0	1
b	(d,e) √			d	а	d	1	0
~	v	v]	f	С	а	0	0
C	~	X						
d	x	X	X					
е	x	X	x	\checkmark				
	(c,d) X	(c,e) X						
f	(a b)	(a b)	X	X	X	K		
	(a,b)	(a,b)						
g	x	X	X	(d,e) \checkmark	(d,e)√	X	
	а	b	С	d	Ē)	f	

ELECTRICAL

Output