## Digital Design

## Lecture 6: K-Maps

Birla Institute of Technology \& Science, Pilani

## Last class

## 2/3- Variable K-maps

Basic concepts involved in K-map to reduce Boolean expressions

## Solve Using K-Map

$$
F(A, B, C)=A^{\prime} C+A B^{\prime} C+B C+A B^{\prime}+A^{\prime} B C^{\prime}
$$


$F=C+A^{\prime} B+A B^{\prime}$

## 3-Variable K-Map

$$
F(X, Y, Z)=\pi(0,1,2,5)
$$

2- cells or 4-cells or 8-cells at a time

| X | Y | Z | F |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |


| YZ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 00 |  |  |  |

$X=0, Z=0$ constant,$Y$ varies

## 3-Variable K-Map

$F(X, Y, Z)=\pi(2,3,4,5)$

| X | Y | Z | F |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 |

$F=(X+Y)\left(X^{\prime}+Y^{\prime}\right)$

## Don't care conditions

$$
F(A, B, C)=\sum(3,4,6,7)
$$

| A | B | C | F |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |


| B C |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| A | 00 | 01 | 11 | 10 |
| 0 | 0 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 | 1 |

$\mathrm{F}=\mathrm{BC}+\mathrm{AC}{ }^{\prime}$

## Don't care conditions

$$
F(A, B, C)=\sum(3,4,6,7)
$$

| A | B | C | F |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | X |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |


$F=B C+A$

Earlier expression F = BC + AC'

## DAC



## DAC



## 7 Segment Display Driver



## Don't care conditions

$$
F(A, B, C)=\sum(0,2,4,5,6)+d(3,7)
$$

| A | B | C | F |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | X |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | X |

B C

$X$ Considered as 1 if it helps in reducing the terms or literals
$X$ taken as 0 and neglected if it does not reduce terms or literals

## 4-Variable K-Map



Verify 1-bit variations between adjacent cells

## 4-Variable K-Map

$$
F(w, x, y, z)=\sum(1,3,4,5,6,7,11,14,15)
$$



$F=w^{\prime} x+y z+x y+w^{\prime} z$
yz

## 4-Variable K-Map


$\sum(0,2,3,5,7,8,9,10,11,13,15)$

## 4-Variable K-Map



## 4-Variable K-Map



## 4-Variable K-Map



## 4-Variable K-Map



## 4-Variable K-Map

$$
\begin{array}{ll}
F=X^{\prime} Z^{\prime}+Y Z+X Z+W Z & X^{\prime} Z^{\prime}, Y Z, X Z, W Z, X^{\prime} Y, W X^{\prime} \text { are } \\
F=X^{\prime} Z^{\prime}+X^{\prime} Y+X Z+W Z & \text { Prime Implicants } \\
F=X^{\prime} Z^{\prime}+X^{\prime} Y+X Z+W X^{\prime} & \\
F=X^{\prime} Z^{\prime}+Y Z+X Z+W X^{\prime} &
\end{array}
$$

All are minimized and all are correct solutions
What are the terms common here ??
$X^{\prime} Z^{\prime}$ and $X Z$ appear in all the solutions
$X^{\prime} Z^{\prime}$ and XZ are called Essential Prime Implicants

## 1. Implicant of Functions

Implicant is a product/minterm term in Sum of Products (SOP) or sum/maxterm term in Product of Sums (POS) of a Boolean function.
E.g.,

Consider a boolean function, $\mathrm{F}=\mathrm{AB}+\mathrm{ABC}+\mathrm{BC}$. Implicants are $\mathrm{AB}, \mathrm{ABC}$ and BC .

Implicant: For a Boolean function F expressed in SOP form, a product term $p$ is an implicant of the Function $F$ if and only if $F=1$ for every combination of the input values to the variables of the product term $p$, for which $p=1$.

## 2. Prime Implicant of Functions

A group of square or rectangle made up of bunch of adjacent minterms which is allowed by definition of KMap are called prime implicants(PI) i.e. all possible groups formed in K-Map.


No. of Prime Implicants $=3$

## 3. Essential Implicant of Functions

These are those subcubes(groups) which cover atleast one minterm that can't be covered by any other prime implicant. Essential prime implicants(EPI) are those prime implicants which always appear in final solution..


Implicant: For a Boolean function $F$ expressed in SOP form, a product term $p$ is an implicant of the Function $F$ if and only if $F=1$ for every combination of the input values to the variables of the product term $p$, for which $\mathrm{p}=1$.

Prime Implicant: An implicant of a function F is a prime implicant of F if it is not completely enclosed in bigger valid group of minterms (or maxterms) in the K-map.

Essential Prime Implicant: A prime implicant of a function F is an essential prime implicant of $F$ if the loop for prime implicant contains at least one minterm (maxterm) box that is not contained in any other prime implicant loop of $F$.

## 4. Redundant Implicant of Functions

The prime implicants for which each of its minterm is covered by some essential prime implicant are redundant prime implicants(RPI). This prime implicant never appears in final solution..


No. of Redundant Prime Implicants = 1

## 4-Variable K-Map

YZ


How to find essential prime Implicants ?

Check how many ways a minterm can be covered ?

Select all minterms that are covered in only one way
Minimized expressions corresponding to minterms that are covered in only one way are essential prime implicants

## 4-Variable K-Map

YZ

Is there any way that $\mathrm{m}_{0}$ can be covered ??

## 4-Variable K-Map

YZ

$\mathrm{m}_{3}$ can be covered in multiple ways

## 4-Variable K-Map

YZ

$m_{2}$ can be covered in multiple ways

## 4-Variable K-Map

YZ

$\mathrm{m}_{5}$ can be covered in only one way
Corresponding expression is XZ

## 4-Variable K-Map

YR


Similarly it can be analyzed that $m_{7}, m_{8}, m_{9}, m_{11}, m_{13}, m_{15}$ can be covered in multiple ways

## 4-Variable K-Map

YZ


Only $m_{0}$ and $m_{5}$ can be covered in only one way
Hence the corresponding expressions $X Z$ and $X^{\prime} Z^{\prime}$ are called Essential prime Implicants

## Thank You

