Digital Design

Lecture 4: K-Map
 [For simplification of Boolean expressions]

Birla Institute of Technology \& Science, Pilani

Boolean Functions

Each input entry will be represented by a term

Minterms
Standard Product

$$
\begin{aligned}
& \begin{array}{|c|}
\hline F 3 \\
\hline 1 \\
\hline 0 \\
\hline 1 \\
\hline 1 \\
\hline
\end{array} \\
& F 3=x^{\prime} y^{\prime}+x y^{\prime}+x y \\
& F 3=m_{0}+m_{2}+m_{3} \\
& F 3=\sum(0,2,3) \\
& \text { Sum of Products } \\
& \text { (Canonical form-Type1) }
\end{aligned}
$$

Boolean Functions

Boolean Functions

Each input entry will be represented by a term

Boolean Functions

Why to use K-Maps?

Canonical Expression can be simplified by algebraic means

Algebraic method lacks specific rules

K-map method simple, straight forward and pictorial understanding and gives both SOP and POS forms

2-Variable K-Map

Truth-table to K-map

2-Variable K-Map

Representation of cells

2-Variable K-Map

One bit variation between adjacent cells

What is the importance of 1-bit variation ??

2-Variable K-Map

Simplification

X	Y	F
0	0	1
0	1	1
1	0	0
1	1	0

$$
X^{\prime} Y^{\prime}+X^{\prime} Y=X^{\prime}\left(Y^{\prime}+Y\right)=X^{\prime}
$$

If there are 1's in adjacent cells then they can be grouped and Minimized functions can be obtained

2-Variable K-Map

Simplification

X	Y	F
0	0	1
0	1	1
1	0	0
1	1	0

$\mathrm{X}=0$ constant Y varies from $0 \rightarrow 1$

2-Variable K-Map

Simplification

X	Y	F
0	0	0
0	1	0
1	0	1
1	1	1

$X=1$ constant Y varies from $0 \rightarrow 1$

2-Variable K-Map

Simplification

X	Y	F
0	0	1
0	1	1
1	0	1
1	1	1

$$
X^{\prime}+X=1
$$

2-Variable K-Map

Simplification

X	Y	F
0	0	1
0	1	1
1	0	1
1	1	1

Adjacent cells can be grouped
2- cells at a time
4- cells at a time

2-Variable K-Map

Simplification

X	Y	F
0	0	1
0	1	0
1	0	1
1	1	1

**A term can be grouped multiple times if it helps in simplifying the expression

3-Variable K-Map

X	Y	Z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Should the next entry be $(0,1,0)$?

$$
(0,0,1) \rightarrow(0,1,0)
$$

**Two bit variation here, what to do ??

3-Variable K-Map

Adjacent Cells

Any more adjacent cells ??

3-Variable K-Map

$$
F=X Y+Y Z+X Z
$$

2- cells or 4-cells or 8-cells at a time

X	Y	Z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$\mathrm{Y}=1, \mathrm{Z}=1$ constant , X varies

$$
X=1, Y=1 \text { constant , } Z \text { varies }
$$

3-Variable K-Map

$F(X, Y, Z)=\Sigma(0,2,4,5,6)$

X	Y	Z	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

3-Variable K-Map

$$
F(X, Y, Z)=\sum(0,2,4,5,6)
$$

2- cells or 4-cells or 8-cells at a time

X	Y	Z	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

$\mathrm{F}=X \mathrm{Y}^{\prime}+\mathrm{Z}^{\prime} \quad \begin{aligned} & \mathrm{XY} \\ & \\ & \mathrm{Z}=0, \text { constant }, \mathrm{X}, \mathrm{Y} \text { Change }\end{aligned}$

3-Variable K-Map

$$
F(X, Y, Z)=\sum(2,3,4,5)
$$

2- cells or 4-cells or 8-cells at a time

X	Y	Z	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

YZZ				
	00	01	11	10
0	0	0	1	1
1	1	1	0	0

$F=X Y^{\prime}+X^{\prime} Y$

3-Variable K-Map

$$
F(X, Y, Z)=\sum(3,4,6,7)
$$

2- cells or 4-cells or 8-cells at a time

X	Y	Z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Is the third grouping necessary ?
All ones should get covered atleast once
If all of them are covered then there is no need to group them again

3-Variable K-Map

$$
F(X, Y, Z)=\sum(3,4,6,7)
$$

2- cells or 4-cells or 8-cells at a time

X	Y	Z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

$$
F=Y Z+X Z^{\prime} \quad F=Y Z+X Z^{\prime}+X Z^{\prime}
$$

Both expressions will result in same truth table But only first expression is minimized

2-Variable K-Map

Simplification

X	Y	F
0	0	1
0	1	0
1	0	1
1	1	1

A term can be grouped multiple times if it helps in simplified expression

2-Variable K-Map

Simplification

X	Y	F
0	0	1
0	1	0
1	0	1
1	1	1

$$
\begin{aligned}
& F=X+Y^{\prime} \\
& F=X+X^{\prime} Y^{\prime}
\end{aligned}
$$

Which of the two is a minimized function ??

3-Variable K-Map

$$
F(X, Y, Z)=\pi(0,1,2,5)
$$

2- cells or 4-cells or 8-cells at a time

X	Y	Z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

$\mathrm{X}=0, \mathrm{Z}=0$ constant, Y varies

3-Variable K-Map

$$
F(X, Y, Z)=\pi(2,3,4,5)
$$

2- cells or 4-cells or 8-cells at a time

X	Y	Z	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

YZZ				
X	00	01	11	10
0	0	0	1	1
1	1	1	0	0

$F=(X+Y)\left(X^{\prime}+Y^{\prime}\right)$

Next Class

4/5-variable K-map
K-map with don't care conditions

