Digital Design

Lecture 4: K-Map [For simplification of Boolean expressions]

Each input entry will be represented by a term

F3 = x'y' + xy' + xy $F3 = m_0 + m_2 + m_3$ $F3 = \sum(0,2,3)$ Sum of Products (Canonical form-Type1)

Each input entry will be represented by a term

Why to use K-Maps?

Canonical Expression can be simplified by algebraic means

Algebraic method lacks specific rules

K-map method simple, straight forward and pictorial understanding and gives both SOP and POS forms

Truth-table to K-map

Representation of cells

One bit variation between adjacent cells

What is the importance of 1-bit variation ??

Simplification

Х	Y	F
0	0	1
0	1	1
1	0	0
1	1	0

X'Y' + X'Y = X'(Y' + Y) = X'

If there are 1's in adjacent cells then they can be grouped and Minimized functions can be obtained

Simplification

Х	Y	F
0	0	1
0	1	1
1	0	0
1	1	0

X = 0 constant Y varies from $0 \rightarrow 1$

Simplification

Х	Y	F	$\sim Y$	0	1
0	0	0		U	
0	1	0	0	0	0
1	0	1	Χ	1	1
1	1	1	1		_

X = 1 constant Y varies from $0 \rightarrow 1$

Simplification

Х	Y	F
0	0	1
0	1	1
1	0	1
1	1	1

X' + X = 1

Simplification

Х	Y	F
0	0	1
0	1	1
1	0	1
1	1	1

Adjacent cells can be grouped

2- cells at a time4- cells at a time

Simplification

**A term can be grouped multiple times if it helps in simplifying the expression

Х	Y	Ζ	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Y	Ζ			
\sim	00	01	11	10
	(0,0,0)	(0,0,1)	(0,1,1)	(0,1,0)
U	m_0	m_1	m ₃	m ₂
1	(1,0,0)	(1,0,1)	(1,1,1)	(1,1,0)
Ŧ	m_4	m_5	m ₇	m_6

Should the next entry be (0, 1, 0)? $(0,0,1) \rightarrow (0,1,0)$

**Two bit variation here, what to do ??

Adjacent Cells

Any more adjacent cells ??

F = XY + YZ + XZ

X=1, Y=1 constant , Z varies

2- cells or 4-cells or 8-cells at a time $F(X,Y,Z) = \sum (0,2,4,5,6)$ ΥZ F Χ Y Ζ Х \mathbf{O} \cap XY'

2- cells or 4-cells or 8-cells at a time $F(X,Y,Z) = \sum (0,2,4,5,6)$ ΥZ Χ Υ F Х ()()XY' F = XY' + Z'Z=0, constant, X, Y Change

 $F(X,Y,Z) = \sum (2,3,4,5)$

2- cells or 4-cells or 8-cells at a time

Χ	Y	Ζ	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

F = XY' + X'Y

 $F(X,Y,Z) = \sum (3,4,6,7)$

2- cells or 4-cells or 8-cells at a time

Χ	Υ	Ζ	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Is the third grouping necessary ?

All ones should get covered atleast once

If all of them are covered then there is no need to group them again

 $F(X,Y,Z) = \sum (3,4,6,7)$

2- cells or 4-cells or 8-cells at a time

Χ	Y	Ζ	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

$F = YZ + XZ' \qquad F = YZ + XZ' + XZ'$

Both expressions will result in same truth table

But only first expression is minimized

Simplification

A term can be grouped multiple times if it helps in simplified expression

Simplification

Which of the two is a minimized function ??

 $F(X,Y,Z) = \pi (0,1,2,5)$

2- cells or 4-cells or 8-cells at a time

 $F(X,Y,Z) = \pi(2,3,4,5)$

2- cells or 4-cells or 8-cells at a time

Χ	Y	Ζ	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

 $\mathsf{F} = (\mathsf{X} + \mathsf{Y})(\mathsf{X'} + \mathsf{Y'})$

Next Class

4/5-variable K-map

K-map with don't care conditions