Digital Design

CS/EEE/ECE /INSTR F215

Instructor's Name: Sanjay Vidhyadharan (L1) Ankur Bhattacharjee (L2)

Online Mode Google Class Code: pdkrzzi

1.1

Lecture Classes

- As per timetable through google meet.
- Presentations will be uploaded in PDF format.
- https://sanjayvidhyadharan.in/Downloads
 Study Materials for Digital Design 2020

https://sanjayvidhyadharan.in/blog/digitalelctronics-design/

Tut classes

- As per timetable through google meet
- New Tut Questions will be uploaded weekly basis on CMS
- Students should attempt to do problems themselves
- Solutions will be discussed in Tut classes
- https://sanjayvidhyadharan.in/Downloads
 Study Materials for Digital Design 2020

Lab classes

- As per timetable through google meet.
- New Lab Assignment will be uploaded every Monday on Link provided on CMS.
- Students should carryout lab experiments themselves within a week.
- Experiments done will be evaluated in Lab classes subsequent week.
- Upload exp files as directed by Lab instructor.

Notices : On CMS & Google Classroom pdkrzzi

Contacts:

sanjayv@hyderabad.bits-pilani.ac.in
 Phone & WhatsApp : 8447750103
 a.bhattacharjee@hyderabad.bits-pilani.ac.in

Text Books

T1: M.Moris Mano and Michael D. Ciletti " Digital Design", Pearson, 5th Edition, 2013.

Reference Books:

- R1. Neal S. Widmer, Gregory L. Moss & Ronald J. Tocci, "Digital Systems Principles and Applications" Pearson, 12th Edition, 2018.
- R2. Charles H. Roth, Jr. and Larry L. Kinney "Fundamentals of Logic Design" Cengage Learning 7th Edition, 2013.
- R3: M.Moris Mano and Michael D. Ciletti " Digital Logic and Computer Design", Pearson,, e-Book, 2016.

Course Content

Lect. No.	Learning Objectives	Topics to be covered	Reference to Text Book
1	Introduction to Digital	Discussion on course curriculum and	T1:1.1
	Systems and	evaluation procedure. Advantages and	R1:8.1
	Characteristics of	disadvantages of digital systems,	T1:2.9
	Digital ICs.	Evolution of Digital technology	
		terminologies used in digital systems.	
2	Number system	Binary numbers, two's and one's compliment, addition and subtraction of binary numbers, octal and hexadecimal numbers, binary codes	T1:1.2-1.9
3-4	Boolean algebra and logic gates	Boolean functions, canonical forms, logic gates.	T1: 2.1-2.8
5 -6	Simplification of Boolean functions	K-Maps (4,5 variables),	T1: 3.1- 3.8
7	Simplification of	QM Method	T1: 3.10
	Boolean functions		
8	Simplification of Boolean functions	Mutli-level and Multi-output Circuits	R2:7.1-7.7

Course Content

Lect. No.	Learning Objectives	Topics to be covered	Reference to Text Book
10-14	Combinational Logic, Arithmetic circuits	Adders, Subtractors, Multipliers	T1: 4.1 – 4.7
15-20	MSI Components	Comparators, Decoders, Encoders, MUXs, DEMUXs	T1: 4.8 - 4.11
21-24	Sequential Logic	Flip-Flops & Characteristic tables, Latches	T1:5.1 - 5.4
25-30	Clocked Sequential Circuits	Analysis of clocked sequential circuits, state diagram and reduction	T1:5.5, 5.7 & 5.8
31-34	Registers & Counters	Shift registers, Synchronous & Asynchronous counters, clock skew & Clock Jitter	T1:6.1 - 6.5
35-38	Memory and PLDs	RAM, ROM, PLA, PAL	T1:7.1 - 7.7
39-43	Digital Integrated Circuits	RTL, DTL,TTL,ECL & CMOS Gates, Implementation of Simple CMOS circuits	T1:10.1 -10.7

Evaluation

Component	Duration	Weightage (%)	Date	
T1	30 minutes	15 %	10-20 th September	
T2	30 minutes	15 %	09-20 th October	
Т3	30 minutes	15 %	10-20 th November	
Regular Lab evaluation	During Lab hours	20 %	Regular Lab days	
Final Lab Exam	30 Min	10%	16-21 November	
Comprehensive	120 minutes	25%	December 2020	
Exam				
Total		100%		

Binary System:

Two Binary Logic States '0' and '1'

Two voltage levels corresponding to the 2 States TTL : 0 & 5 V CMOS 180 nm : 0 & 1.8 V CMOS 45 nm : 0 & 1V CMOS 7 nm : 0 & 0.8 V

Advantages of Digital System:

1. Negligible Noise

Advantages of Digital System:

2. Computation is easy.

All microprocessors are digital system based.

- 3. Storage of and retrieval of data is easy. RAM, Hard Disks all are digital
- 4. Error detection and Correction possible
- 5. Digital signal processing enables wide variety of applications
- 6. Data encrypting and de- encrypting is very secure

Advantages of Digital System:

7. Time Division Multiplexing

Disadvantages of Digital System:

1. Large Bandwidth

Figure 4.12 Fourier transform of a symmetric periodic square wave.

CS/EEE/ECE /INSTR F215

Disadvantages of Digital System:

 Everything in Real world is Analog ADC and DAC Required
 Long distance transition by wire/ RF is analog Modulation of Digital bits required.

Basic Binary Logic Gates

Basic Binary Logic Gates

AND			OR				XOR			
INF	PUT	OUTPUT		INF	PUT	OUTPUT		INPUT		
А	В	001201	А	В			А	В	001201	
0	0	0		0	0	0		0	0	0
1	0	0		1	0	1		1	0	1
0	1	0		0	1	1		0	1	1
1	1	1		1	1	1		1	1	0

Basic Binary Logic Gates

Evolution of Digital Technology

- Diode Transistor Logic
- Transistor Transistor Logic : 1963 Discrete IC
- **Emitter-coupled logic**

CMOS:

:1959

- : First Microprocessor 360
- 1974 Intel 4004 which had 2000 Transistors Channel Length of 10 µm.
- 2020 AMB 7 nm has billions of Transistors Channel Length of 7 nm.

1. Noise Margin

2. Propagation Delay (Eg. Inverter)

3. Rise Time and Fall Time

4. Power

Thank You