Digital Electronics and Computer Organization

Digital Design

Lecture 15: Sequential Logic \& SR Latch

Birla Institute of Technology \& Science, Pilani

Sequential Circuits

Combinational circuits - The outputs are entirely dependent on current inputs

Sequential circuits

- The outputs are dependent on current inputs as well as present state of storage elements

Next state = external inputs + present state

Sequential Circuits

Classification

Synchronous Sequential circuits

Asynchronous Sequential circuits

Sequential Circuits

Asynchronous sequential circuits

The transition from one state to another is initiated by the change in the primary inputs there is no external synchronization

The memory commonly used are time-delayed devices

May be regarded as combinational circuits with feedback.
May become unstable

Sequential Circuits

Synchronous sequential circuit
Synchronous sequential circuits change their states and output values at discrete instants of time

Synchronization is achieved by a timing device called clock generator

Clock generator generates a clock signal having the form of a periodic train of pulses

Sequential Circuits

Clocked synchronous sequential circuit
Storage elements are flip-flops

Output value stored in flip-flop when clock occurs
Prior to the occurrence of the clock the combinational output must be stable

Speed of the combinational logic is critical

Storage elements

Maintains a binary state indefinitely until directed by an input signal to switch states

Latches

Storage elements that operate with signal levels (rather than signal transitions)

Latch active
Level Sensitive
Flip-Flops
Storage elements that are controlled by clock transitions
Edge Sensitive

Storage elements

Maintains a binary state indefinitely until directed by an input signal to switch states

Latches

Storage elements that operate with signal levels (rather than signal transitions)

Level Sensitive

Flip-Flops

Flip-flop active

Storage elements that are controlled by clock transitions
Edge Sensitive

Storage elements

Storing 0

Storage elements

Storing 0

Is there any way to control the storage value ?

NOR -NAND

Latches

SR Latch

Reset $=0$, Set $=0 \quad$ No change in outputs
New state = Old state

Latches

SR Latch

Reset $=1$, Set $=0 \quad Q=0$ and $Q^{\prime}=1$
Reset operation

Latches

SR Latch

Reset $=0$, Set $=1 \quad \mathrm{Q}=1$ and $\mathrm{Q}^{\prime}=0$
Set operation

Latches

SR Latch

Reset $=1$, Set $=1 \quad Q=0$ and $Q^{\prime}=0 \quad$ But
Reset $=0$, Set $=0$
Cant predict output - > metastable state

Latches

SR Latch

Cant predict output - > metastable state

Set $=1$, reset $=1$ is thus forbidden state

\mathbf{S}	\mathbf{R}	\mathbf{Q}	\mathbf{Q}^{\prime}	
0	0	\mathbf{Q}	\mathbf{Q}^{\prime}	No change
0	1	0	1	Reset
1	0	1	0	set
1	1	0	0	Forbidden

Latches

$S^{\prime} R^{\prime}$ Latch

Latches

$S^{\prime} R^{\prime}$ Latch

\mathbf{S}	\mathbf{R}	\mathbf{Q}	\mathbf{Q}^{\prime}	
0	0	1	1	Forbidden
0	1	1	0	Set
1	0	0	1	Reset
1	1	\mathbf{Q}	\mathbf{Q}^{\prime}	No change

Latches

$S^{\prime} R^{\prime}$ Latch

Reset $^{\prime}=1$, Set $^{\prime}=1 \quad$ No change in outputs
New state = Old state

Latches

$S^{\prime} R^{\prime}$ Latch

Reset $^{\prime}=1$, Set $^{\prime}=0 \quad Q=1$ and $Q^{\prime}=0$
set operation

Latches

SR Latch

Reset ${ }^{\prime}=0$, Set $^{\prime}=1 \mathrm{Q}=0$ and $\mathrm{Q}^{\prime}=1$
Reset operation

Latches

SR Latch

Reset $^{\prime}=0$, Set $=0 \quad Q=1$ and $Q^{\prime}=1 \quad$ But
Reset' $=1$, Set' $=1$
Cant predict output - > metastable state

Latches

$S^{\prime} R^{\prime}$ Latch

\mathbf{S}	\mathbf{R}	\mathbf{Q}	\mathbf{Q}^{\prime}	
0	0	1	1	Forbidden
0	1	1	0	Set
1	0	0	1	Reset
1	1	\mathbf{Q}	\mathbf{Q}^{\prime}	No change

Latches

SR Latch with enable

Latches

SR Latch with enable

Thank You

