Digital Design

Lecture 11: Combinational Logic and Arithmetic Circuits

Birla Institute of Technology \& Science, Pilani

Combinational Circuits

- A combinational circuit consists of logic gates whose outputs, at any time, are determined by combining the values of the inputs.
- For n input variables, there are 2^{n} possible binary input combinations.
- For each binary combination of the input variables, there is one possible output.

Combinational Circuits (cont.)

- Hence, a combinational circuit can be described by:

1. A truth table that lists the output values for each combination of the input variables, or
2. m Boolean functions, one for each output variable.

Combinational vs. Sequential Circuits

- Combinational circuits are memory-less. Thus, the output value depends ONLY on the current input values.
- Sequential circuits consist of combinational logic as well as memory elements (used to store certain circuit states). Outputs depend on BOTH current input values and previous input values (kept in the storage elements).

Combinational vs. Sequential Circuits

Combinational Circuit

Sequential Circuit

Half Adder

Input is limited to 2 bits

$$
\begin{aligned}
H S & =X \operatorname{xor} Y \\
& =X \bullet Y^{\prime}+X^{\prime} \cdot Y \\
C O & =X \bullet Y
\end{aligned}
$$

Time for the Half Adder?

1 gate delay
A gate delay of an xor for the half sum
A gate delay of an AND gate for the carry out

Half Adder

NAND vs. XOR

2 input NAND gate (Static Logic)

2 input NOR gate (Static Logic)

2 input XOR gate (Static logic)

2 input XNOR gate (Static logic)

Full Adder

Input is now $X Y$ and the Carry in.

So have

$$
\begin{aligned}
S & =X \bullet Y^{\prime} \bullet \operatorname{Cin}^{\prime}+X^{\prime} \bullet Y \bullet C i n '+X^{\prime} \cdot Y^{\prime} \bullet \operatorname{Cin}+X \bullet Y \bullet C i n \\
& =X \text { xor } Y \text { xor Cin }
\end{aligned}
$$

Cout $=X \bullet Y+X \bullet C i n+Y \bullet C i n$

Full Adder

Two level logic
Output delay
A, B Cin \rightarrow Sum
Delay through 2 xor gates
$\mathrm{t}_{\mathrm{s}}=2 \mathrm{t}_{\mathrm{xor}}$
A, B Cin \rightarrow Cout
Delay through an AND gate and an OR gate
$t_{\text {Cout }}=t_{\text {and }}+t_{\text {or }}$

Full Adder

Two level logic
Output delay
A, B Cin \rightarrow Sum
Delay through 2 xor gates
$\mathrm{t}_{\mathrm{s}}=2 \mathrm{t}_{\mathrm{xor}}$
A, B Cin \rightarrow Cout
Delay through an AND gate and an OR gate
$\mathrm{t}_{\text {Cout }}=\mathrm{t}_{\text {and }}+\mathrm{t}_{\text {or }}$

Full Adder

Delay= 2 Gate Delay ?

Full Adder

Full-adder can also implemented with two half adders and

$$
\begin{aligned}
S & =z \bigoplus(x \bigoplus y) \\
& =z^{\prime}\left(x y^{\prime}+x^{\prime} y\right)+z\left(x y^{\prime}+x^{\prime} y\right)^{\prime} \\
& =x y^{\prime} z^{\prime}+x^{\prime} y z^{\prime}+x y z+x^{\prime} y^{\prime} z \\
C & =z\left(x y^{\prime}+x^{\prime} y\right)+x y=x y^{\prime} z+x^{\prime} y z+x y
\end{aligned}
$$

Ripple Carry Adder

This is called Ripple Carry Adder ,because of the construction with full adders are connected in cascade.

Delay= 4 X Full Adder Delay

Carry Look-Ahead Adder

1-bit CLA

Carry Look-Ahead Adder

Carry Look-Ahead Adder

$$
\begin{gathered}
\mathrm{C}_{2}=\mathrm{G}_{1}+\mathrm{P}_{1} \mathrm{C}_{1} \\
\mathrm{C}_{2}=\mathrm{G}_{1}+\mathrm{P}_{1} \cdot\left(\mathrm{G}_{0}+\mathrm{P}_{0} \mathrm{C}_{0}\right)
\end{gathered}
$$

$$
C_{2}=G_{1}+P_{1} G_{0}+P_{1} P_{0} C_{0}
$$

$$
\mathrm{C}_{1}=\mathrm{G}_{0}+\mathrm{P}_{0} \mathrm{C}_{0}
$$

Carry Look-Ahead Adder

$C_{2}=G_{1}+P_{1} G_{0}+P_{1} P_{0} C_{0}$
$\mathrm{C}_{1}=\mathrm{G}_{0}+\mathrm{P}_{0} \mathrm{C}_{0}$

Carry Look-Ahead Adder

$$
\begin{aligned}
& C_{1}=G_{0}+P_{0} C_{0} \\
& C_{2}=G_{1}+P_{1} G_{0}+P_{1} P_{0} C_{0} \\
& C_{3}=G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} C_{0} \\
& C_{4}=G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}+P_{3} P_{2} P_{1} P_{0} C_{0}
\end{aligned}
$$

