Digital Electronics and Computer Organization

Digital Design

Lecture 23: Synchronous Counters

Binary Synchronous Counter

3 bit binary counter

0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1
0	0	0	0

- Idea:
- to use same clock for all flip-flops

Synchronous Counters

- There is a common clock
- that triggers all flip-flops simultaneously
- If $T=0$ or $J=K=0$ the flip-flop does not change state.
- If $T=1$ or $J=K=1$ the flip-flop does change state.
- Design procedure is so simple
- no need for going through sequential logic design process
- A_{0} is always complemented
- A_{1} is complemented when $A_{0}=1$
- A_{2} is complemented when $A_{0}=1$ and $A_{1}=1$
- so on

4-bit Binary Synchronous Counter

Up-Down Binary Counter

- When counting downward
- the least significant bit is always complemented (with each clock pulse)
- A bit in any other position is complemented if all lower significant bits are equal to 0 .
- For example: 0100
- Next state: 0011
- For example: 1100

STATE TABLE

COUNT	Q1	Q0
3	1	1
2	1	0
1	0	1
0	0	0

- Next state: 1011

Up-Down Binary Counter

Synchronous BCD Counter

- Better to apply the sequential circuit design procedure

Present state				Next state				output	Flip-Flop inputs			
A_{8}	A_{4}	A_{2}	A_{1}	A_{8}	A_{4}	A_{2}	A_{1}	y	T_{8}	T_{4}	T_{2}	T_{1}
0	0	0	0	0	0	0	1	0	0	0	0	1
0	0	0	1	0	0	1	0	0	0	0	1	1
0	0	1	0	0	0	1	1	0	0	0	0	1
0	0	1	1	0	1	0	0	0	0	1	1	1
0	1	0	0	0	1	0	1	0	0	0	0	1
0	1	0	1	0	1	1	0	0	0	0	1	1
0	1	1	0	0	1	1	1	0	0	0	0	1
0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	0	0	1	0	0	0	0	1
1	0	0	1	0	0	0	0	1	1	0	0	1

Synchronous BCD Counter

- The flip-flop input equations
- $\mathrm{T}_{1}=1$
- $T_{2}=A_{8}^{\prime} A_{1}$
$-T_{4}=A_{2} A_{1}$
$-T_{8}=A_{8} A_{1}+A_{4} A_{2} A_{1}$
- Output equation
$-y=A_{8} A_{1}$
- Cost
- Four T flip-flops
- four 2-input AND gates
- one OR gate
- one inverter

Binary Counter with Parallel Load

Binary Counter with Parallel Load

 Function Table| clear | clock | load | Count | Function |
| :---: | :---: | :---: | :---: | :---: |
| 0 | X | X | X | clear to 0 |
| 1 | \uparrow | 1 | X | load inputs |
| 1 | \uparrow | 0 | 1 | count up |
| 1 | \uparrow | 0 | 0 | no change |

Other Counters

- Ring Counter
- Timing signals control the sequence of operations in a digital system
- A ring counter is a circular shift register with only one flip-flop being set at any particular time, all others are cleared.

initial value 1000

Ring Counter

- Sequence of timing signals

Ring Counter

- To generate 2^{n} timing signals,
- we need a shift register with 2^{n} flip-flops
- or, we can construct the ring counter with a binary counter and a decoder

Cost:

- 2 flip-flop
-2-to-4 line decoder
Cost in general case:
- n flip-flops
- n-to- $2 n$ line decoder

Johnson Counter

- A k-bit ring counter can generate k distinguishable states
- The number of states can be doubled if the shift register is connected as a switch-tail ring counter

Johnson Counter

- Count sequence and required decoding

sequence number	Flip-flop outputs				Output
	X	Y	Z	T	
1	0	0	0	0	$X^{\prime} T^{\prime}$
2	1	0	0	0	X^{\prime}
3	1	1	0	0	Y^{\prime}
4	1	1	1	0	$Z T$
5	1	1	1	1	$X T$
6	0	1	1	1	$X^{\prime} Y$
7	0	0	1	1	$Y^{\prime} Z$
8	0	0	0	1	$Z^{\prime} T$

Johnson Counter

- Decoding circuit

Unused States in Counters

- 4-bit Johnson counter

Johnson Counter

Inputs				Outputs			
X	y	Z	T	X	y	Z	T
0	0	0	0	1	0	0	0
1	0	0	0	1	1	0	0
1	1	0	0	1	1	1	0
1	1	1	0	1	1	1	1
1	1	1	1	0	1	1	1
0	1	1	1	0	0	1	1
0	0	1	1	0	0	0	1
0	0	0	1	0	0	0	0
1	0	1	0	1	1	0	1
1	1	0	1	0	1	1	0
0	1	1	0	1	0	1	1
1	0	1	1	0	1	0	1
0	1	0	1	0	0	0	0
0	0	1	0	1	0	0	1
1	0	0	1	0	1	0	0
0	1	0	0	1	0	0	0

K-Maps

XY	00	01	11	10
00				
01				
11	1	1	1	1
10	1	1	1	1
$y=x$				

Unused States in Counters

- Remedy

Unused States in Counters

- State diagram

