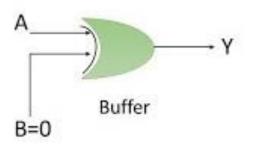
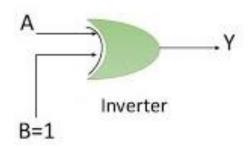
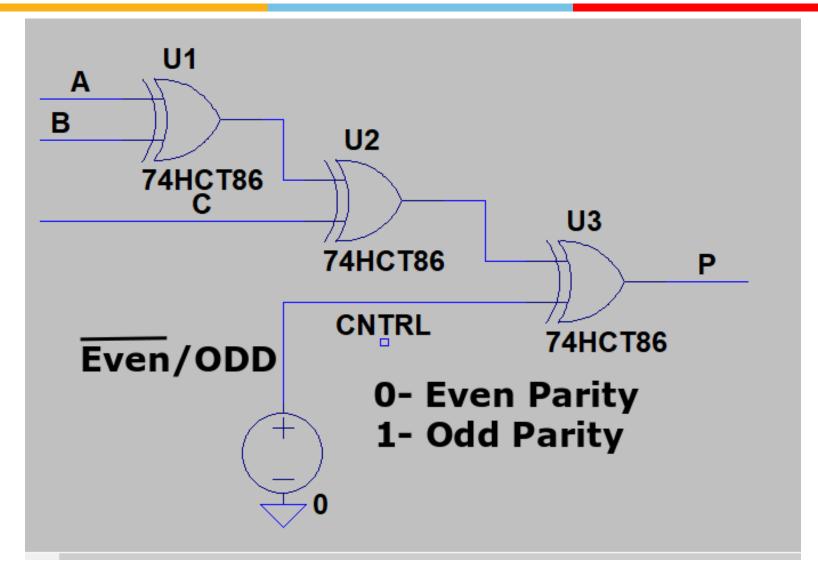


Digital Design: 2020-21 Lab 2 Parity Generator & Adders By Dr. Sanjay Vidhyadharan

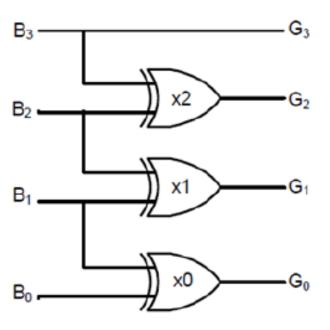

3-	3-bit Message		
х	Y	Z	Parity Bit
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0



3-	3-bit Message		
х	Y	z	Parity Bit
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1


EX-OR Gate As Buffer and Inverter

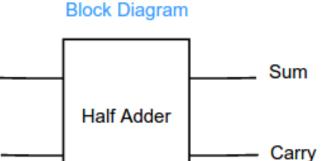
Control	Α	F
0	0	0 \
0	1	Pass 1
1	0	1] Invert
1	1	Invert

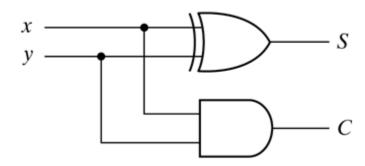


Binary to Gray Converter

Problem 1:Binary to Gray Converter

Decimal Number	4 bit Binary Number ABCD	4 bit Gray Code G ₁ G ₂ G ₃ G ₄
0	0 0 0 0	0 0 0 0
1	0 0 0 1	0 0 0 1
2	0 0 1 0	0 0 1 1
3	0 0 1 1	0 0 1 0
4	0 1 0 0	0 1 1 0
5	0 1 0 1	0 1 1 1
6	0 1 1 0	0 1 0 1
7	0 1 1 1	0 1 0 0
8	1000	1 1 0 0
9	1001	1 1 0 1
10	1010	1 1 1 1
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000


Half Adder

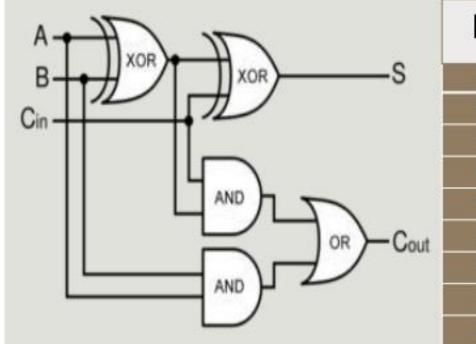

Problem 2: Half Adder

Truth Table

Input		Output		
Α	В	Sum	Carry	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

$$Sum(S) = x \oplus y$$

 $Carry(C) = xy$



В

Full Adder

Problem 3: Full Adder

INF	TU	CARRY IN	OUTI	PUT
×	y	C in	C out	s
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

FULL ADDER CIRCUIT & TRUTH TABLE

Demonstration

8/7/2020