Electrical Science: 2021-22 Tutorial 4 First Order Circuits

By Dr. Sanjay Vidhyadharan

Problem 1

Find the time constant for the RC circuit.

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{th}}=12+(120 \| 80)=60 \\
& \mathrm{~T}=60 \mathrm{Ohm} \times 50 \mathrm{mF}=3 \mathrm{~ms}
\end{aligned}
$$

Problem 2

The switch in Fig. has been in position A for a long time. Assume the switch moves instantaneously from A to B at $\mathrm{t}=0$. Find v for $\mathrm{t}>0$.

$$
\begin{aligned}
& \mathrm{V}(0)=40 \mathrm{~V} \\
& \mathrm{~T}=2 \mathrm{KOhm} \times 10 \mu \mathrm{~F}=20 \mathrm{~ms} \\
& 1 / \mathrm{T}=1 / 20 \mathrm{~ms}=50 \mathrm{~s}^{-1} \\
& \text { Ans: } \mathrm{V}(\mathrm{t})=40 \mathrm{e}^{-50 \mathrm{t}} \mathrm{~V}
\end{aligned}
$$

Problem 3

The switch in Fig. has been closed for a long time, and it opens at $t=0$. Find $v(t)$ for $t \geq 0$.

$$
\begin{aligned}
& \mathrm{V}(0)=\frac{60 * 2}{2+10}=10 \mathrm{~V} \\
& \mathrm{~T}=2 \mathrm{KOhm} \times 40 \mu \mathrm{~F}=80 \mathrm{~ms} \\
& 1 / \mathrm{T}=1 / 80 \mathrm{~ms}=12.5 \mathrm{~s}^{-1} \\
& \text { Ans: } \mathrm{V}(\mathrm{t})=10 \mathrm{e}^{-12.5 \mathrm{t}} \mathrm{~V}
\end{aligned}
$$

Problem 4

For the circuit in Fig., find $v_{0}(t)$ for $t>0$. Determine the time necessary for the capacitor voltage to decay to one-third of its value at $t=0$.

$$
V(0)=\frac{36 * 3}{9+3}=9 \mathrm{~V}
$$

$\mathrm{T}=3 \mathrm{KOhm} \times 20 \mu \mathrm{~F}=60 \mathrm{~ms}$
Ans: $\mathrm{v}_{0}(\mathrm{t})=9 \mathrm{e}^{-16.67 \mathrm{t}} \mathrm{V}$
$1 / \mathrm{T}=1 / 60 \mathrm{~ms}=16.67 \mathrm{~s}^{-1}$

$$
\mathrm{t}=65.92 \mathrm{~ms}
$$

Problem 5

The switch is kept a position A for a long time and moved to B at time $t=0$. Determine the voltage across the capacitor at $\mathrm{t}=1 \mathrm{~s}$ and 4 s .

Source: Notes ELL 100 IITD

Problem 5

The switch is kept a position A for a long time and moved to B at time $t=0$. Determine the voltage across the capacitor at $t=1 \mathrm{~s}$ and 4 s .

For $\boldsymbol{t}<\mathbf{0}$, the switch is at position A. The capacitor acts like an open circuit to dc, so v is the same as the voltage across the $5 \mathrm{k} \Omega$ resistor. Hence, the voltage across the capacitor before $t=0$ is obtained by voltage division as,

$$
v\left(0^{-}\right)=\frac{5}{5+3}(24)=15 \mathrm{~V}
$$

Problem 5

$$
\begin{aligned}
& \mathrm{T}=\mathrm{RC}=4 \times 10^{3} \times 0.5 \times 10^{-3}=2 \mathrm{~s} \\
& \begin{aligned}
\mathrm{v}(0)=15 \mathrm{~V} \\
\mathrm{v}(\infty)=30 \mathrm{~V}
\end{aligned} \\
& \begin{aligned}
\text { Thus, } \begin{aligned}
v(t) & =\mathrm{v}(\infty)+[\mathrm{v}(0)-\mathrm{v}(\infty)] e^{-t / \tau} \\
& =30+(15-30) e^{-t / 2} \\
& =\left(30-15 e^{-0.5 t}\right) \mathrm{V}
\end{aligned} \\
\begin{aligned}
\text { At } t=1, \mathrm{v}(1) & =30-15 \mathrm{e}^{-0.5}=20.9 \mathrm{~V} \\
\text { At } t=4, \mathrm{v}(4) & =30-15 \mathrm{e}^{-2}=27.97 \mathrm{~V}
\end{aligned}
\end{aligned} . \begin{aligned}
\\
\hline
\end{aligned}
\end{aligned}
$$

Source: Notes ELL 100 IITD

Problem 6

Find i and v if the switch is opened at $t=0$ after keeping it closed for a long time.

Source: Notes ELL 100 IITD

Problem 6

Find i and v if the switch is opened at $t=0$ after keeping it closed for a long time.

By definition of the unit step function, $30 u(t)=\left\{\begin{array}{cc}0 & t<0 \\ 30 & t>0\end{array}\right.$
For $t<0, v=10 V, i=-\frac{v}{10}=-1 A$
The capacitor voltage cannot change instantaneously, $v(0)=v\left(0^{-}\right)=10 \mathrm{~V}$

Problem 6

Find i and v if the switch is opened at $\mathrm{t}=0$ after keeping it closed for a long time.

For $\boldsymbol{t}>\mathbf{0}$, the 10 V voltage source is disconnected and the 30 V voltage source is now operative
$v(\infty)$ is obtained using voltage division, $v(\infty)=\frac{20}{20+10}(30)=20 \mathrm{~V}$

The Thevenin resistance at the capacitor terminals is $R_{T h}=10 \| 20=20 / 3 \Omega$
Time constant is

$$
\begin{aligned}
\mathrm{S} \tau=R_{T h} C=\frac{20}{3} \cdot \frac{1}{4}=\frac{5}{3} s \\
\text { Thus, } \begin{aligned}
v(t) & =v(\infty)+[v(0)-v(\infty)] e^{-t / \tau} \\
& =20+(10-20) e^{-(35) t}=\left(20-10 e^{-0.6 t}\right) \mathrm{V}
\end{aligned} \\
\end{aligned}
$$

Problem 6

Find i and v if the switch is opened at $t=0$ after keeping it closed for a long time.

i is the sum of the currents through the $20-\Omega$ resistor and the capacitor,

$$
i=\frac{v}{20}+C \frac{d v}{d t}
$$

$$
\begin{gathered}
i=1-0.5 e^{-0.6 t}+0.25(-0.6)(-10) e^{-0.6 t}=\left(1+e^{-0.6 t}\right) \mathrm{A} \\
\text { Or } \quad v+10 i=30 \quad \text { (KVL in outer loop) }
\end{gathered}
$$

$$
\begin{aligned}
& v=\left\{\begin{array}{cc}
10 V & t<0 \\
\left(20-10 e^{-0.6 t}\right) V & t>0
\end{array}\right. \\
& i=\left\{\begin{array}{cl}
-1 A & t<0 \\
\left(1+e^{-0.6 t}\right) \mathrm{A} & t>0
\end{array}\right.
\end{aligned}
$$

Problem 7

Find $i(t)$ in the circuit below for $t>0$. Assume that the switch has been closed for a long time before opening.

Problem 7

Find $i(t)$ in the circuit below for $t>0$. Assume that the switch has been closed for a long time before opening.

Solution:
For $\boldsymbol{t}<\mathbf{0}$, the $3-\Omega$ resistor is shortcircuited, and the inductor acts like a short circuit. The current through the inductor at $t=0^{-}$is $i\left(0^{-}\right)=10 / 2=5 \mathrm{~A}$

Since inductor current cannot change instantaneously $i(0)=i\left(0^{+}\right)=i\left(0^{-}\right)=5 \mathrm{~A}$

For $\boldsymbol{t}>\mathbf{0}$, the $3-\Omega$ resistor comes in series with the $2-\Omega$ resistor
The steady-state inductor current is $i(\infty)=\frac{10}{2+3}=2 \mathrm{~A}$

Problem 7

Find $i(t)$ in the circuit below for $t>0$. Assume that the switch has been closed for a long time before opening.

The Thevenin resistance across the inductor terminals is

Thank you

