

INSTRUMENTATION

Electrical Science: 2021-22 Lecture 9 Inductors

By Dr. Sanjay Vidhyadharan

ELECTRICAL ELECTRONICS

COMMUNICATION

Inductors

> An Inductor is a device which can store energy.

ELECTRICAL

ELECTRONICS

Inductance is the property of a conductor to oppose a change in current.

COMMUNICATION

Types of Inductors

Self Inductance of a Coil

• Self inductance of a circuit element (a coil, wire, resistor or whatever) as

$$L = F_B/I$$

- From this we have $F_B = LI$ and so $dF_B/dt = L dI/dt$
- and Faraday's law gives
 E = L dI/dt
- Since this emf opposes changes in the current (in the component) it is often called the "back emf".
- From now own "inductance" means self-inductance.

Inductance Formula

COMMUNICATION

ELECTRICAL

Steady State Current in an Inductor

COMMUNICATION

ELECTRICAL

ELECTRONICS

6

Switch Open : No Current

When Switch is closed

Current I flows, growing gradually, and a 'back emf' E_L is generated in inductor. The emf E_L opposes the current I $\Rightarrow E_L = -L dI/dt$

After a certain time the current (V/R) becomes steady. Then E_L is zero.

ELECTRONICS

COMMUNICATION

7

ELECTRICAL

COMMUNICATION

8

COMMUNICATION

ELECTRICAL

COMMUNICATION

ELECTRICAL

ELECTRONICS

10

Series Inductors

COMMUNICATION

ELECTRICAL

ELECTRONICS

11

Parallel Inductors

COMMUNICATION

ELECTRONICS

ELECTRICAL

12

Energy Stored in Inductor

ELECTRICAL

Energy stored in Capacitor= $\int_0^V V_C C dV_c = \frac{1}{2}V^2 * C$ For Inductors Power = $vi = iL\frac{di}{dt}$ Energy = $\int_0^t P dt = \int_0^I Lidi = \frac{1}{2}I^2 * L$ where $I = \frac{V}{R}$

Energy **consumed** from power supply = $V_{DD} \int_0^t i(t) dt = V_{DD} \int_0^t I(1 - e^{\frac{-tR}{L}}) dt = I^2 * L$

Energy dissipated in Resistor = $\frac{1}{2}I^2 * L$

COMMUNICATION

ELECTRONICS

Energy Stored in Inductor

ELECTRICAL

Applications of Inductors

- 1. Energy storage
- 2. Power conditioning
- 3. RF coupling and decoupling applications
- 4. LPF, HPF. BPF Filters
- 5. Oscillators
- 6. Noise Filters

Energy Stored in Inductors

20 mA ———			
10 mA			
0 A ———			
-10 mA			
-20 mA	500) µs	
🔵 Max 0 A 🛛 N	1in 0 A Range 0 A		
		12 V	
		+	0 V 300 Ω
		1000	
		0	

ELECTRICAL

ELECTRONICS

COMMUNICATION

16

Energy Stored in Inductors

ELECTRICAL EL

ELECTRONICS

COMMUNICATION

COMMUNICATION

ELECTRICAL