

INSTRUMENTATION

Electrical Science: 2021-22 Lecture 8 Capacitors

By Dr. Sanjay Vidhyadharan

ELECTRICAL ELECTRONICS

COMMUNICATION

Capacitors

- > A capacitor is a device which can store electrical charge.
- Capacitor consists of a pair of conducting plates separated by an insulator. The insulator is called a dielectric and is often air, paper or oil. $C = \frac{Q}{v}$

COMMUNICATION

ELECTRONICS

ELECTRICAL

C= capacitance (unit farad (F))

Q = the magnitude of the charge on one plate (unit coulombs (C))

V = the p.d. between the plates (unit volts (V))

Types of Capacitors

The multilayer ceramic capacitors are prepared by using the surface mounted (SMD) technology and they are smaller in size, therefore, it is used widely. The values of the ceramic capacitors are typically between the 1nF and 1 μ F and the values are up to 100 μ F are possible.

ELECTRICAL

ELECTRONICS

COMMUNICATION

Charge Stored in a Capacitor

COMMUNICATION

ELECTRONICS

ELECTRICAL

INSTRUMENTATION

ELECTRICAL

ELECTRONICS

COMMUNICATION

INSTRUMENTATION

COMMUNICATION

ELECTRICAL

ELECTRONICS

7

COMMUNICATION

ELECTRICAL

ELECTRONICS

INSTRUMENTATION

Discharging a Capacitor

INSTRUMENTATION

ELECTRONICS

COMMUNICATION

Series Capacitors

COMMUNICATION

$$V_{1} = \frac{Q}{C_{1}} \qquad V_{2} = \frac{Q}{C_{2}} \qquad V_{3} = \frac{Q}{C_{3}}$$
$$V_{1} + V_{2} + V_{3} = Q \left(\frac{1}{C_{1}} + \frac{1}{C_{2}} + \frac{1}{C_{3}}\right)$$
$$V = Q \left(\frac{1}{C_{1}} + \frac{1}{C_{2}} + \frac{1}{C_{3}}\right)$$

A single capacitor which has the same effect is: $V = \frac{Q}{C}$

ELECTRONICS

+___

So:
$$\frac{1}{C} = \left(\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}\right)$$

ELECTRICAL

+QC. -Q+QC, -Q +Q-Q (a) +QC. -Q(b) **INSTRUMENTATION**

Parallel Capacitors

COMMUNICATION

ELECTRICAL

ELECTRONICS

Energy Stored in Capacitor

Energy stored in C= $\int_0^V V_c C dV_c = \frac{1}{2}V^2 * C$

Energy **consumed** from power supply = $V_{DD} \int_0^T i(t) dt = V_{DD} Q_{CL} = V_{DD}^2 C_L$

Energy **dissipated** in Resistor during charging $=\frac{1}{2} \cdot V_{DD}^2 \cdot C_L$

ELECTRICAL ELECTRONICS COMMUNICATION

Energy Stored in Capacitor

Energy stored in C during charging = $\int_0^V V_c C dV_c = \frac{1}{2}V^2 * C$

Energy **dissipated** in Resistor during discharging $=\frac{1}{2}V^2 * C$

ELECTRICAL ELECTRONICS COMMUNICATION

Applications of Capacitors

- 1. Energy storage
- 2. Power conditioning
- 3. RF coupling and decoupling applications
- 4. LPF, HPF. BPF Filters
- 5. Oscillators
- 6. Noise Filters

Energy Stored in Capacitor

20 mV			
10 mV			
0.1/			
0 •			
-10 mV			
-20 mV	5 s		
Max0V Min0V Range0V RMS0V			
	4V 		
		0.7	
			÷

ELECTRICAL

ELECTRONICS

COMMUNICATION

COMMUNICATION

ELECTRICAL

ELECTRONICS

INSTRUMENTATION