

INSTRUMENTATION

Electrical Science: 2021-22 Lecture 6 **Norton's Theorem & Max Power Transform Theorem**

By Dr. Sanjay Vidhyadharan

ELECTRICAL

ELECTRONICS

COMMUNICATION

Applications of Norton's Theorem

ELECTRONICS

ELECTRICAL

- Simplifies the network in terms of currents instead of voltages.
- It reduces a network to a simple current source parallel with a resistor.

A **linear** two-terminal circuit can be replaced by an equivalent circuit consisting of a current source I_N in parallel with a resistor R_N , where I_N is the short-circuit current through the terminals and R_N is the input or equivalent resistance at the terminals when the independent sources are turned off.

COMMUNICATION

2

Steps to determine Norton's equivalent Resistance (R_N) and Current (I_N):

- Calculate R_N in the same way as R_{Th}
- \bullet To find the Norton current ${\sf I}_{\sf N}$, we determine the short-circuit current flowing at output terminal
- This short-circuit current is the Norton equivalent current I_N .

Close relationship between Norton's and Thevenin's theorems:

COMMUNICATION

ELECTRICAL

ELECTRONICS

<u>Example:</u> Find the Norton equivalent circuit to the left of terminals A-B and find the current in the 50 Ω resistor using the equivalent circuit.

COMMUNICATION

ELECTRICAL

ELECTRONICS

COMMUNICATION

ELECTRICAL

ELECTRONICS

COMMUNICATION

ELECTRONICS

ELECTRICAL

COMMUNICATION

ELECTRONICS

ELECTRICAL

Example 2

ELECTRICAL

ELECTRONICS

Replace the 8- Ω resistor that is connected between nodes 'a' and 'b' with short circuit, and calculate I_{sc}

COMMUNICATION

INSTRUMENTATION

COMMUNICATION

ELECTRICAL

ELECTRONICS

11

Example 2

Remove the 8- Ω Load resistor from the circuit. Calculate the open-circuit voltage V_{oc} between nodes a and b.

ELECTRICAL

ELECTRONICS

COMMUNICATION

COMMUNICATION

ELECTRICAL

ELECTRONICS

Limitations of Norton's Theorem

If the circuit consists of nonlinear elements, this theorem is not applicable.

COMMUNICATION

ELECTRICAL

ELECTRONICS

ELECTRICAL ELECTRONICS

COMMUNICATION

ELECTRICAL EL

ELECTRONICS

COMMUNICATION

Maximum power is transferred to the load from a network when the load resistance equals the Thevenin resistance as seen from the load ($R_L = R_{Th}$).

ELECTRICAL

ELECTRONICS

COMMUNICATION INSTRUMENTATION

If the value of the load resistance is
$$R_L$$
, the current
flowing through the circuit is $i = \frac{V_{Th}}{R_{Th} + R_L}$
Power transferred to the load is
 $p = i^2 R_L = \left(\frac{V_{Th}}{R_{th} + R_L}\right)^2 R_L = \frac{V_{Th}^2 R_L}{R_{Th}^2 + 2R_L R_{Th} + R_L^2} = \frac{V_{Th}^2}{\left(\frac{R_{Th}^2}{R_L}\right) + 2R_{Th} + R_L}$

INSTRUMENTATION

ELECTRICAL ELECTRONICS COMMUNICATION

DERIVATION
$$\frac{dp}{dR_L} = V_{Th}^2 \left[\frac{(R_{Th} + R_L)^2 - 2R_L(R_{Th} + R_L)}{(R_{Th} + R_L)^4} \right]$$
$$= V_{Th}^2 \left[\frac{(R_{Th} + R_L - 2R_L)}{(R_{Th} + R_L)^3} \right] = 0$$
$$0 = (R_{Th} + R_L - 2R_L) = (R_{Th} - R_L)$$
$$R_L = R_{Th}$$

The power transferred from the source to the load is maximum when the resistance of the load is equal to the internal resistance of the source.

INSTRUMENTATION

This condition is referred to as resistance/impedence matching.

ELECTRICAL ELECTRONICS COMMUNICATION

• The maximum power transferred is obtained by $p_{\text{max}} = \frac{V_{Th}^2}{4R}$

ELECTRICAL

ELECTRONICS

- The total power delivered by the source $= I_L^2 (R_L + R_{Th}) = 2 \times I_L^2 R_L$
- Efficiency under maximum power transfer condition is given by

COMMUNICATION

Find the value of R_L for maximum power transfer to R_L .

ELECTRONICS COMM

ELECTRICAL

COMMUNICATION

ELECTRICAL

ELECTRONICS

COMMUNICATION

ELECTRICAL ELECTRONICS

COMMUNICATION

ELECTRONICS COMMUNICATION

ELECTRICAL

COMMUNICATION

ELECTRICAL

ELECTRONICS

26