Electrical Science: 2021-22 Lecture2
 Basic Electrical Quantities and Resistance

By Dr. Sanjay Vidhyadharan

Basic Electrical Quantities

- Four quantities?
- Charge (C)
- Current (Amps)
- Voltage (Volts)
- Power (Watt)
- Charge
- Unit?
- Coulomb (C)
- SI unit
- Charge of an electron?C
- $q=-1.6 \times 10^{-19} \mathrm{C}$
- How many electrons with 1C charge?
- $1 \mathrm{C}=1 / 1.6 \times 10^{-19}$ electrons
- 6.25×10^{18} electrons

Basic Electrical Quantities

- Current
- Time rate of change of electric charge
- $I=d q / d t$
- Unit?
- Ampere (SI)
- $1 \mathrm{Amp}=1$ Coulomb/sec
- Types of current?
- DC current
\square batteries
- AC current
household current which varies with time

Basic Electrical Quantities

- Voltage
- Energy required to move a unit charge through an element
- Electromotive force or potential
- Unit?
- Volt
- Power
- $P=1 \times V$
- Unit?
- Watt
- 1 Watt = 1 Volt \cdot Amp = $1 \mathrm{Joule} / \mathrm{sec}$

Resistors

- Resistance - The capacity of a material to impede flow of electric charge.
- The circuit element used to model this behavior is resistor.
- Resistance is measured in Ohms (Ω)

Ohms Law

Resistors

- Power Dissipated as heat $P=V I=V^{2} / R=I^{2} R$

- Real-world devices that are modeled by resistors:
- heating elements (stoves, heaters, etc.)
- long wires

Conductance $G=1 / R$ mho

Resistors

In 1952, the IEC (International Electrotechnical Commission) decided to define the resistance and tolerance values into a norm, to ease the mass manufacturing of resistors. These are referred to as "preferred values" or "E-series", and they are published in standard IEC 60063:1963.
very decade (0.1-1.0, 1-10, 10-100, etc.) is divided in 12 steps on a logarithmic scale.
The size of every step is equal to: $10{ }^{(1 / 12)}=1.21$

Resistors

Color	Value	Multiplier	Tolerance
Black	0	$\times 10^{0}$	$\pm 20 \%$
Brown	1	$\times 10^{1}$	$\pm 1 \%$
Red	2	$\times 10^{2}$	$\pm 2 \%$
Orange	3	$\times 10^{3}$	$\pm 3 \%$
Yellow	4	$\times 10^{4}$	$-0,+100 \%$
Green	5	$\times 10^{5}$	$\pm 0.5 \%$
Blue	6	$\times 10^{6}$	$\pm 0.25 \%$
Violet	7	$\times 10^{7}$	$\pm 0.10 \%$
Gray	8	$\times 10^{8}$	$\pm 0.05 \%$
White	9	$\times 10^{9}$	$\pm 10 \%$
Gold	-	$\times 10^{-1}$	$\pm 5 \%$
Silver	-	$\times 10^{-2}$	$\pm 10 \%$

4-band resistor $218=$
 270 ohms $\pm 5 \%$

5-band resistor

$100 k$ ohms $\pm 1 \%$

Resistors

Resistors

Resistors

- Potentiometers

Resistors

Star and Delta Connections

Star Connection (Y Or WYE)

Star and Delta Connections

$R_{a}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{R_{1}} \quad R_{1}=\frac{R_{b} R_{c}}{R_{a}+R_{b}+R_{c}}$
$R_{b}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{R_{2}}$
$R_{2}=\frac{R_{a} R_{c}}{R_{a}+R_{b}+R_{c}}$
$R_{c}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{R_{3}}$
$R_{3}=\frac{R_{a} R_{b}}{R_{a}+R_{b}+R_{c}}$

Resistors

- Applications

Resistors

- Applications

Resistors

- Applications

Voltage division concept is used in

$$
\begin{aligned}
& V_{o u t}=V_{1} \frac{I R_{2}}{I\left(R_{1}+R_{2}\right)}=\frac{V_{1} R_{2}}{\left(R_{1}+R_{2}\right)} \\
& \begin{array}{c}
\text { OUTPUT VOLTAGE } \\
\text { UNDER LOAD } \\
\text { OUTOUT VOLTAGE UNDER }
\end{array} \\
& \text { (open circuit) }
\end{aligned} \quad V_{\text {out }}=V_{1} \frac{I R_{2}}{I\left(R_{1}+R_{2}\right)}=\frac{V_{1}\left(R_{2} \| R_{L}\right)}{\left(R_{1}+R_{2} \| R_{L}\right)}
$$

BEHAVIOR UNDER LOAD

OPEN CIRCUIT BEHAVIOR
 making radios, amplifiers and electronic devices for adjusting signal levels.

Resistors

- Applications

$$
R=\frac{9-1.8}{.02}=360
$$

3mm Round LEDs (Water Clear)		Forward voltage		Dominant wavelength		Luminous Intensity		Viewing angle
Part number	Emitting Color	(V) $\mathrm{IF}=20 \mathrm{~mA}$		IF=20mA		(mcd) IF $=20 \mathrm{~mA}$		
		TYP	MAX	MIN	MAX	TYP	MAX	(degree)
LEDWR3MMR	Red	1.8	2.3	620	640	2000	3000	20-30
LEDWR3MMY	Yellow	1.8	2.3	585	595	2000	3000	20-30
LEDWR3MMB		3.2	3.4	465	475	3000	5000	20-30
LEDWR3MMG	Green	3.2	3.4	520	530	8000	9000	20-30
LED- WR3MMW	White	3.2	3.4	1	1	8000	9000	20-30

Resistors

- Applications

3mm Round LEDs (Water Clear)		Forward voltage		Dominant wavelength		Luminous Intensity		Viewing angle
Part number	Emitting Color	(V) $\mathrm{IF}=20 \mathrm{~mA}$		$\mathrm{IF}=20 \mathrm{~mA}$		(mcd) IF $=20 \mathrm{~mA}$		
		TYP	MAX	MIN	MAX	TYP	MAX	(degree)
LEDWR3MMR	Red	1.8	2.3	620	640	2000	3000	20-30
LEDWR3MMY	Yellow	1.8	2.3	585	595	2000	3000	20-30
LEDWR3MMB		3.2	3.4	465	475	3000	5000	20-30
LEDWR3MMG	Green	3.2	3.4	520	530	8000	9000	20-30
LEDWR3MMW	White	3.2	3.4	1	1	8000	9000	20-30

$$
R=\frac{5-1.8}{.02}=160
$$

Thank you

