

# **Electrical Science: 2021-22** Lecture 20 **Passive Filters** By Dr. Sanjay Vidhyadharan

ELECTRICAL ELECTRONICS

COMMUNICATION



2

ELECTRICAL ELECTRONICS COMMUNICATION



ELECTRICAL

**ELECTRONICS** 

COMMUNICATION

INSTRUMENTATION



ELECTRICAL ELECTRONICS

ICS COMM

COMMUNICATION



COMMUNICATION

**ELECTRICAL** 

**ELECTRONICS** 

$$v_{i} \bigwedge^{L} v_{o} \qquad \frac{v_{o}}{v_{i}} = \frac{Z_{R}}{Z_{R} + Z_{L}} = \frac{R}{R + j\omega L} = \frac{1}{1 + j\omega \frac{L}{R}} = \frac{1}{1 + j\frac{\omega}{\omega_{c}}} = \frac{1}{1 + j\frac{f}{f_{c}}}$$

At low frequencies,  $\omega$  is small and the voltage gain is approximately 1.

| voltage gain | =  $\frac{1}{\sqrt{1 + \left(\omega \frac{L}{R}\right)^2}}$ es. At high frequencies, the magnitude of  $\omega L/R$  becomes more significant and the gain of the network decreases.

When the value of  $\omega L/R$  is equal to 1, this gives

| voltage gain | = 
$$\frac{1}{\sqrt{1+1}} = \frac{1}{\sqrt{2}} = 0.707$$

$$A_{v} = Gain(j\omega) = \frac{1}{\sqrt{1 + (\frac{\omega_{0}}{\omega})^{2}}} \angle \tan^{-1}(\frac{\omega_{0}}{\omega}) \qquad \qquad \omega_{0}$$

ELECTRICAL

ELECTRONICS

COMMUNICATION

R

Calculate the cutoff frequency for the RC High-Pass filter in Figure

ELECTRICAL

**ELECTRONICS** 



COMMUNICATION

Calculate the cutoff frequency for the RL High-Pass filter in Figure. Resistor =  $10K\Omega$ , and Inductor = 470mH



**ELECTRONICS** 

**ELECTRICAL** 

# **Second Order High Pass Filters**



ELECTRICAL

**ELECTRONICS** 

COMMUNICATION

INSTRUMENTATION

## **Second Order High Pass Filters**



10

ELECTRICAL ELECTRONICS

COMMUNICATION

# **Other High Pass Filters**



3 pole T LC high pass RF filter

COMMUNICATION

**ELECTRICAL** 

**ELECTRONICS** 

11



12

**ELECTRICAL** 

**ELECTRONICS** 

COMMUNICATION



COMMUNICATION

ELECTRICAL

**ELECTRONICS** 

13



COMMUNICATION



COMMUNICATION

#### **Second Order Low Pass Filters**



COMMUNICATION

**ELECTRICAL** 

**ELECTRONICS** 

#### **Second Order Low Pass Filters**



COMMUNICATION

**ELECTRICAL** 

**ELECTRONICS** 

17



COMMUNICATION

**ELECTRICAL** 

**ELECTRONICS** 

18

# **Quality Factor of Band Pass Filters**



COMMUNICATION

ELECTRICAL

**ELECTRONICS** 

**INSTRUMENTATION** 

\_\_\_\_\_



INSTRUMENTATION

#### ELECTRICAL EL

ELECTRONICS

COMMUNICATION



21

**ELECTRONICS** 

COMMUNICATION



$$\omega_0 = \frac{1}{\sqrt{LC}}$$

22

#### ELECTRONICS COMMUNICATION

**ELECTRICAL** 

# **Band Reject Filters**



COMMUNICATION

**ELECTRICAL** 

**ELECTRONICS** 

# **Band Reject Filters**



**INSTRUMENTATION** 

# **Active Filters**



COMMUNICATION

**ELECTRICAL** 

**ELECTRONICS** 

25



COMMUNICATION

**ELECTRONICS** 

**ELECTRICAL**