

INSTRUMENTATION

Electrical Science: 2021-22

Lecture 12

Introduction to AC Circuits

By Dr. Sanjay Vidhyadharan

COMMUNICATION

ELECTRICAL

ELECTRONICS

COMMUNICATION

ELECTRICAL

ELECTRONICS

Advantages AC over DC

(ii) When AC is supplied at higher voltages, the transmission losses are small compared to DC transmission. Conversion from high to low voltages and vice-versa is essay.

COMMUNICATION

ELECTRICAL

ELECTRONICS

Disadvantages of AC w.r.t DC

(i) Design of AC circuits more complex than DC

(ii) Paralleling AC more complex than DC sources

(iii)Losses due to radiation

6

ELECTRONICS

COMMUNICATION

COMMUNICATION

ELECTRICAL

ELECTRONICS

COMMUNICATION

ELECTRICAL

ELECTRONICS

COMMUNICATION

ELECTRICAL

ELECTRONICS

COMMUNICATION

ELECTRICAL

ELECTRONICS

Review of Complex Numbers

COMMUNICATION

Complex Numbers

• $i = \sqrt{-1}$

ELECTRICAL

- $i^2 = (\sqrt{-1})^2 = -1$
- $i^3 = i^2 \times i = -1 \times i = -i$

ELECTRONICS

 $i^4 = (i^2)^2 = (-1)^2 = 1$

- Complex number A = a + ib
- Complex conjugate $A^* = a jb$

INSTRUMENTATION

Review of Complex Numbers

ELECTRONICS

COMMUNICATION

Phasors

Euler's Formula

ELECTRICAL

ELECTRONICS

$$e^{i\phi} = \cos\phi + i\sin\phi$$

 \Box By considering $\cos \phi$ and $\sin \phi$ as the real and imaginary parts of $e^{j\phi}$,

$$\cos\phi = \operatorname{Re}(e^{j\phi}), \sin\phi = \operatorname{Im}(e^{j\phi})$$

COMMUNICATION

Phasor Representation

COMMUNICATION

ELECTRICAL

ELECTRONICS

Phasor Conversion Examples

Numerical 1: Transform these sinusoids to phasors,

(a) $i = 6 \cos(50t - 40^\circ) \text{ A}$ (b) $v = -4 \sin(30t + 50^\circ) V$

Solution:

- (a) $i = 6 \cos(50t 40^{\circ})$ A has the phasor, $I = 6 \angle -40^{\circ} A$ (b) Since, $-\sin A = \cos(A + 90^{\circ})$,
- - $v = -4\sin(30t + 50^\circ) = 4\cos(30t + 50^\circ + 90^\circ) = 4\cos(30t + 140^\circ)$ V

The phasor form of v is $V = 4 \angle 140^{\circ} V$

Phasor Operations

ELECTRICAL

ELECTRONICS

COMMUNICATION

The RMS voltage/current value can also be defined as the "value of the direct voltage/current that dissipates the same power in a resistor."

$$f_{
m RMS} = \sqrt{rac{1}{T_2 - T_1} \int_{T_1}^{T_2} \left[f(t)
ight]^2 {
m d}t},$$

COMMUNICATION

ELECTRONICS

ELECTRICAL

INSTRUMENTATION

The RMS voltage/current value can also be defined as the "value of the direct voltage/current that dissipates the same power in a resistor."

$$f_{
m RMS} = \sqrt{rac{1}{T_2 - T_1} \int_{T_1}^{T_2} \left[f(t)
ight]^2 {
m d}t},$$

If i is the instantaneous current through the resistance, the average power dissipated is, $I_{RMS}^2 R$

$$I_{RMS}^{2} = \frac{1}{2\pi} \int_{0}^{2\pi} I_{m}^{2} \sin^{2}(\theta) d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{I_{m}^{2}}{2} d\theta = \frac{I_{m}^{2}}{2}$$

$$I_{RMS} = \frac{I_{m}}{\sqrt{2}} = 0.707 I_{m}$$

$$V_{RMS} = 0.707 V_{m}$$

$$V_{RMS}^{2} = 0.707 V_{m}$$

COMMUNICATION

Power =
$$V_{RMS} * I_{RMS} = I_{RMS}^2 * R = \frac{V_{RMS}^2}{R}$$

ELECTRONICS

ELECTRICAL

19

The Average of a Sinusoidal Signal

ELECTRONICS

ELECTRICAL

 Then the average value is obtained by adding the instantaneous values of voltage over one half cycle only.

COMMUNICATION

COMMUNICATION

□ RMS value of a sinusoidal current or voltage is,

 $I = 0.707 I_m$

Peak factor

ELECTRICAL

- for any waveform the peak factor is defined as

Peak factor = $\frac{\text{peak value}}{\text{r.m.s. value}}$

- for a sine wave this gives

ELECTRONICS

Peak factor =
$$\frac{V_p}{0.707V_p}$$
 = 1.414

□ RMS value of a sinusoidal current or voltage is,

 $I = 0.707 I_{m}$

Form factor

ELECTRICAL

- for any waveform the form factor is defined as

Form factor = r.m.s. value average value

- for a sine wave this gives

ELECTRONICS

Form factor =
$$\frac{0.707 V_p}{0.637 V_p} = 1.11$$

COMMUNICATION

Numerical 1: An alternating current of sinusoidal waveform has an RMS value of 10.0 A. What is the peak-to-peak value of this current?

Solution:
$$I_m = \frac{I}{0.707} = \frac{10}{0.707} = 14.14A$$

ELECTRICAL

The peak-to-peak value is therefore 14.14 - (-14.14) = 28.28 A

INSTRUMENTATION

Numerical 2: An alternating voltage has the equation $v = 141.4 \sin 377t$, what are the values of (a) RMS voltage (b) frequency (c) the instantaneous voltage when t = 3 ms?

Solution: The relation is of the form $v = V_m \sin\omega t$ and by comparison,

$$(a)V_m = 141.4V = \sqrt{2}V$$
 Hence, $V = \frac{141.4}{\sqrt{2}} = 100V$

ELECTRONICS

(b)Also by comparison,

ELECTRICAL

$$\omega = 377 \, rad \, / \, s = 2\pi f, f = \frac{377}{2\pi} = 60 \, Hz$$

(c)Finally, $v = 141.4 \sin 377t$ $v = 141.4 \sin (377 \times 3 \times 10^{-3}) = 141.4 \sin 1.131$ when $t = 3 \times 10^{-3}$ sec, $= 141.4 \times 0.904 = 127.8V$

COMMUNICATION

COMMUNICATION

ELECTRICAL

ELECTRONICS

25

COMMUNICATION

ELECTRONICS

ELECTRICAL