

INSTRUMENTATION

Electrical Science: 2021-22 Lecture 11 Second Order Circuits

By Dr. Sanjay Vidhyadharan

ELECTRICAL ELECTRONICS

COMMUNICATION

Second Order Circuit

• First Order Circuit: Any circuit with a single energy storage element, an arbitrary number of sources, and an arbitrary number of resistors is a circuit of order 1.

- Second Order Circuit:
 - 2nd -order circuit responses are described by 2nd order differential equations

Second Order Circuit

- Second Order Circuit:
 - 2nd -order circuit responses are described by 2nd order differential equations

Order of a circuit

Order of the differential equation (DE) required to describe the circuit The number of independent* energy storage elements (C's and L's)

* C's and L's are independent if they cannot be combined with other C's and L's (in series or parallel, for example)

ELECTRICAL ELECTRONICS COMMUNICATION

INSTRUMENTATION

Second Order Circuits

- Second Order Circuit:
 - 2nd -order circuit responses are described by 2nd -order differential equations

ELECTRICAL

COMMUNICATION

Applications of Second Order Circuits

ELECTRICAL

ELECTRONICS

COMMUNICATION

INSTRUMENTATION

Applications of Second Order Circuits

DC Boost Converters

$$v_{c} + Ri + L\frac{di}{dt} = 0$$
Inserting $i = C\frac{dv}{dt}$;

$$v_{c} + RC\frac{dv}{dt} + LC\frac{d^{2}v}{dt^{2}} = 0$$

$$\gg \frac{d^{2}v}{dt^{2}} + \frac{R}{L}\frac{dv}{dt} + \frac{1}{LC}v = 0$$

$$\gg \frac{d^{2}y(t)}{dt^{2}} + 2\alpha\frac{dy(t)}{dt} + \omega_{n}^{2}y(t) = 0 \qquad \alpha = \frac{R}{2L}; \ \omega_{n} = \frac{1}{\sqrt{LC}};$$

ELECTRONICS COMMUNICATION

ELECTRICAL

INSTRUMENTATION

ELECTRICAL

ELECTRONICS

COMMUNICATION

INSTRUMENTATION

8

 \sim

 $y(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$ (A_1 and A_2 arearbitrary constants and are determined from the initial conditions)

Three types of solutions are inferred: 1. If $\alpha > \omega_n$, we have the over-damped case. 2. If $\alpha = \omega_n$, we have the critically-damped case. 3. If $\alpha < \omega_n$, we have the under-damped case.

Overdamped Case (α > ω₀)
 α > ω₀ implies R² > 4L/C

ELECTRICAL

$$\alpha = \frac{R}{2L}; \ \omega_0 = \frac{1}{\sqrt{LC}}$$

COMMUNICATION

When this happens, both roots s_1 and s_2 are negative and real.

ELECTRONICS

ELECTRONICS C

COMMUNICATION

ELECTRICAL ELECTRONICS

COMMUNICATION

ELECTRONICS COM

ELECTRICAL

COMMUNICATION

INSTRUMENTATION

ELECTRICAL

ELECTRONICS

COMMUNICATION

INSTRUMENTATION

Response of a Parallel RLC Circuit

Assume initial inductor current I_0 and t = 0initial capacitor voltage V_0 , i(t) Three elements are in parallel, they L have the same voltage *v* across them. Applying KCL at the top node gives, $\frac{v}{R} + \frac{1}{L} \int_{0}^{0} v(\tau) d\tau + C \frac{dv}{dt} = 0$ $\frac{d^2v}{dt^2} + \frac{1}{RC}\frac{dv}{dt} + \frac{1}{LC}v = 0$ $s^2 + \frac{1}{RC}s + \frac{1}{LC} = 0$ $s_{1,2} = \frac{1}{2RC} \pm \sqrt{\left(\frac{1}{2RC}\right)^2 - \frac{1}{LC}}$ $\overline{s_{1,2}} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2} , \quad \alpha = \frac{1}{2RC},$ $\omega_0 = \omega$

ELECTRICAL

ELECTRONICS

COMMUNICATION

INSTRUMENTATION

v(t)

Response of a Parallel RLC Circuit

Assume initial inductor current I_0 and t = 0initial capacitor voltage V_0 , i(t) Three elements are in parallel, they L have the same voltage *v* across them. Applying KCL at the top node gives, $\frac{v}{R} + \frac{1}{L} \int_{0}^{0} v(\tau) d\tau + C \frac{dv}{dt} = 0$ $\frac{d^2v}{dt^2} + \frac{1}{RC}\frac{dv}{dt} + \frac{1}{LC}v = 0$ $s^2 + \frac{1}{RC}s + \frac{1}{LC} = 0$ $s_{1,2} = \frac{1}{2RC} \pm \sqrt{\left(\frac{1}{2RC}\right)^2 - \frac{1}{LC}}$ $\overline{s_{1,2}} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2} , \quad \alpha = \frac{1}{2RC},$ $\omega_0 = \omega$

v(t)

Response of a Parallel RLC Circuit

Overdamped Case $(a > \omega_0)$ $a > \omega_0 => L/C > 4R^2$. The roots of the characteristic equation are real and negative. The response is, $v(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$ **Critically Damped Case** $(a = \omega_0)$ $a = \omega_0 => L/C = 4R^2$. The roots are real and equal so "that the response is, $v(t) = (A_1 + A_2 t)e^{-\alpha t}$ **Underdamped Case** $(a < \omega_0)$

 $\alpha < \omega_0 \Longrightarrow L/C < 4R^2. \text{ In this case the roots are complex conjugates}$ expressed as $s_{1,2} = -\alpha \pm j\omega_d; \ \omega_d = \sqrt{\omega_0^2 - \alpha^2}$ $v(t) = e^{-\alpha t} (A_1 \cos \omega_d t + A_2 \sin \omega_d t)$

COMMUNICATION

COMMUNICATION

ELECTRICAL

ELECTRONICS