

## MPI Tutorial-9 8086 Memory Organisation and Interrupts

# By Dr. Sanjay Vidhyadharan



- How many address and data lines are required for the following memory chips?
- 256 X 4
- 1K X 8
- 32K X 16

53

 Suppose the memory chips are now of size 16K X 8. How should the memory be organized for the third case.

157

Solution:

- The number of address and data lines required are:
- 256 X 4 : 8 and 4
- 1K X 8 : 10 and 8

sank

• 32K X 16: 15 and 16

#### Solution:

Now we need to realize a 32KX16 memory using 16KX8 memory chips. Therefore, we would be needing 4 memory chips of 16KX8 arranged as even and odd memory banks. That is 16KX16 can be realized using using 2 16KX8 where one word of 16 bits can be mapped into even and odd bank address space, respectively.



(i) How many hardware interrupts are there in 8086?

a)2 b)3 c)1 d)4

(ii) Which interrupt has the highest priority?a)TRAPb)INTRc) INTOd)NMI



What are the Operations performed by IRET and which flags are affected?

saniay



(i) Mention the address at which  $CS_{40}$  and  $IP_{40}$  corresponding to the vector 40 would be stored in memory?

(ii) Mention five dedicated interrupt types and their purpose?

sanii

#### Solution

(ii)

INT 40, for its storage, requires four (i) memory locations

Two for IP40 and two for CS40.

The addresses are calculated as follows:  $4 \times 40 = (160)_{10} = (1010\ 0000)_2 = A0H.$ Thus, IP40 is stored starting at 000A0 H and

CS40 is stored starting at 000A2 H.

Purpose Interrupt type **Divide error** 0 Single step Non-maskable Interrupt 3 Break point Overflow 4



| Solution  |                                                           |                |                     |                |                                                                                |  |
|-----------|-----------------------------------------------------------|----------------|---------------------|----------------|--------------------------------------------------------------------------------|--|
| (ii)      |                                                           | Interrupt Type | Content (16-bit)    | Address        | Comments                                                                       |  |
| Interrupt | type Purpose                                              | Туре 0 —       | ISR IP              | 0000:0000 T F  | Reserved for divide by Zero   interrupt   Reserved for single step   interrupt |  |
| 0         | Divide error                                              |                | ISR CS              | 0000:0002 – Ir |                                                                                |  |
|           |                                                           | Type 1         | ISR IP              |                |                                                                                |  |
|           | (Called Automatically)                                    | _              | ISR CS              | 0000:0006 - "  |                                                                                |  |
| 1         | Single step<br>PUSHF ;<br>MOV BP, SP<br>OR [ BP ] 0100H · | Type 2         | ISR IP              | 0000:0008      | Reserved for NMI   Reserved for INT single byte instruction                    |  |
|           |                                                           |                | ISR CS              | ∟ A000:0000    |                                                                                |  |
|           |                                                           | Type 3 —       | ISR IP              | 0000:000C T F  |                                                                                |  |
|           |                                                           |                | ISR CS              | 0000:000E – ir |                                                                                |  |
|           | POPF                                                      |                | ISR IP              | 0000:0010      | Reserved for INTO instruction                                                  |  |
|           | To reset the tran flag                                    |                | ISR CS              | 0000:0012 –    |                                                                                |  |
|           | AND IBP 1 OFFFFH instruction instea                       |                |                     | 0000:0014      | 7                                                                              |  |
|           | OR [BP], 0100H.                                           |                |                     | 0000:0016      |                                                                                |  |
| 2         | Non-maskable Interrupt                                    | Туре N —       | ISR IP              | 0000:004N      | Reserved for two byte                                                          |  |
|           |                                                           |                | ISR CS              | 0000:(004N+2)  | ) instruction INT TYPE                                                         |  |
|           |                                                           |                |                     |                |                                                                                |  |
|           |                                                           |                |                     | 0000:03FC      |                                                                                |  |
| 3         | Break point                                               | Type FFH       | ISR IP              | 0000:03FE      |                                                                                |  |
| 4         | Overflow                                                  |                | ISR CS              | 0000:03FF      |                                                                                |  |
|           | (Not Called Automatically)                                |                | ISR : Interrupt Ser | vice Routine   |                                                                                |  |
|           |                                                           |                |                     |                |                                                                                |  |

tiony at

Draw a circuit that will terminate the INTR when interrupt request has been acknowledged.

saniay

Solution:

The figure below makes INTR input of 8086 to go into 1 state once the interrupt request comes from some external agency. The falling edge of the peripheral clocks the flip-flop which makes INTR to become 1.

The first  $\overline{INTR}$  pulse then resets Q, making INTR to become 0. This ensures that no second interrupt request is recognized by the system. The reset input sees to it that INTR remains in the 0 state when the system is reset.



3/24/2021

# Thank You

sanial