MPI Tutorial-7
 8086 Arithmetic \& Logical Operations ALPs

By Dr. Sanjay Vidhyadharan

Problem-1

Write a program in 8086 microprocessor to find out the Subtraction of two address 28 -bit BCD numbers, where numbers are stored from starting memory 000:500 and store the result into memory address 2000:600 and carry (borrow) in $2000: 601$.

Problem-1

Write a program in 8086 microprocessor to find out the Subtraction of two 8 -bit BCD numbers, where numbers are stored from starting memory address 2000:500 and store the result into memory address 2000 : 600 and carry (borrow) in $2000: 601$.

400	MOV AL, [500]	AL<-[500]
404	MOV BL, [501]	$\mathrm{BL}<-[501]$
408	SUB AL, BL	$\mathrm{AL}<-\mathrm{AL}-\mathrm{BL}$
40 A	DAS	DECIMAL ADJUST
40 B	MOV [600], AL	AL->[600]
40 F	MOV AL, 00	AL<-00
411	ADC AL, AL	AL<-AL+AL+Cy(prev)
413	MOV [601], AL	AL->[601]
417	HLT	END

Problem-2

Write a program in 8086 microprocessor to find out the sum of series of even numbers, where numbers are stored from starting offset 500 and store the result at offset 600 .

Problem-2

Write a program in 8086 microprocessor to find out the sum of series of even numbers, where numbers are stored from starting offset 500 and store the result at offset 600 .

400	MOV SI, 500
403	MOV CL, [SI]
405	INC SI
406	MOV CH, 00
408	MOV AL, 00
40 A	MOV BL, [SI]
40 C	TEST BL, 01
40 F	JNZ 413
411	ADD AL, BL
413	INC SI
414	LOOP 40A
416	MOV [600], AL
41 A	HLT

$\mathrm{SI}<-500$
$\mathrm{CL}<-[\mathrm{SI}]$
$\mathrm{SL}<-\mathrm{SI}+1$
$\mathrm{CH}<-00$
$\mathrm{AL}<-00$
$\mathrm{BL}<-[\mathrm{SII}]$
BL AND 01
JUMP IF NOT ZERO
$\mathrm{AL}<-\mathrm{AL}+\mathrm{BL}$
$\mathrm{SI}<-\mathrm{SI}+1$
JUMP TO 40A IF CX NOT ZERO
$\mathrm{AL}->[600]$
END

Problem-3

Write a program to convert Binary number to Grey code 8-bit number where the number is stored at $\mathbf{2 5 0 0}$ memory address and store result into $\mathbf{2 6 0 0}$ memory address.

Problem-3

Write a program to convert Binary number to Grey code 8-bit number where starting address is $\mathbf{2 0 0 0}$ and the number is stored at $\mathbf{2 5 0 0}$ memory address and store result into $\mathbf{2 6 0 0}$ memory address.

2000	MOV	AL, [2500]	$[\mathrm{AL}]<-[2500]$
2004	MOV	BL, AL	$[\mathrm{BL}]<-[\mathrm{AL}]$
2006	SHR	AL, 01	Shift Right one time
2008	XOR	BL, AL	$[\mathrm{BL}]<-[\mathrm{BL}]$ @ AL
200 A	MOV	$[2600]$, BL	$[2600]<-[\mathrm{BL}]$
200E	HLT		Stop

Problem-4

Write an assembly language program in 8086 microprocessor to find sum of digits of an 8 bit number using 8 bit operation.

Input
 2050

Output $\longrightarrow 09$

2051

Problem-4

Write an assembly language program in 8086 microprocessor to find sum of digits of an 8 bit number using 8 bit operation.

00	MOV AL, [2050]	AL<-[2050]
404	MOV AH, AL	AH<-AL
406	MOV CX, 0004	CX <- 0004
409	AND AL, OF	AL <-AL \& OF
	ROLAH, CX	Rotate AH content left by 4 bits(value of CX)
	AND AH, OF	AH <- AH \& OF
	ADD AL, AH	AL<-AL+AH
411	MOV [2051], AL	[2051]<-AL
415	HLT	Stop Execution

Problem-5

Write an assembly language program in 8086 microprocessor to convert an 8 bit BCD number into hexadecimal number.

Input Data

Offset

Output Data

Offset

$(0001 \text { 1001 })_{2}>25_{10}$

Problem-5

Write an assembly language program in 8086 microprocessor to convert an 8 bit BCD number into hexadecimal number.

	0400
	0403
	0406
	0408
	040A
	040C
	040E
	0410
	0412
	0414
	0416
	0418
3/10/2021	041A

MOV SI, 500	$\mathrm{SI}<-500$
MOV DI, 600	$\mathrm{DI}<-600$
MOV BL, [SI]	$\mathrm{BL}<-$ [SI]
AND BL, OF	$\mathrm{BL}=\mathrm{BL}$ AND 0F
MOV AL, [SI]	$\mathrm{AL}<-$ [SI]
AND AL, F0	$\mathrm{BL}=\mathrm{AL}$ AND F0
MOV CL, 04	$\mathrm{CL}=04$
ROR AL, CL	Rotate AL
MOV DL, OA	$\mathrm{DL}=0 \mathrm{~A}$
MUL DL	$\mathrm{AX}=\mathrm{AL}$ * DL
ADD AL, BL	$\mathrm{AL}=\mathrm{AL}+\mathrm{BL}$
MOV [DI], AL	$[\mathrm{DI}]<-\mathrm{AL}$
HLT	End of Program

End of Program

Thank You

