## MPI Tutorial-12 8086 IO Interface

# By Dr. Sanjay Vidhyadharan 

## Problem-1

What is the range of address space for I/O in an 8086 based system?

## Problem-1

What is the range of address space for I/O in an 8086 based system?
Address can range from 0000 H to FFFFH in an 8086 based system i.e. 64 K .

It means 64 K for input ports and 64 K for output ports.

Using IN / OUT Direct 256 : Ports

IN AL, 19H ; IN AX, 20H ; OUT 19H, AL ; OUT 20H, AX

Indirect 64K Ports
IN AL, DX ; IN AX, DX; OUT DX, AL ; OUT DX, AX

## Problem-1

## Simple Input Port



## Problem-1

## Simple Output Port



## Problem-1

## Simple Input \& Output Ports



64K I/P \& 64K O/P

## Problem-2

Give one example each of (a) direct I/O (b) variable I/O instruction..

## Problem-2

Give one example each of (a) direct I/O (b) variable I/O instruction..
(a) An example of direct I/O instruction is as follows:

IN AL, OF2 H
On execution, the contents of the byte wide I/O port at address location F 2 H will be put into AL register.
(b) An example of this type is:

MOV DX, OC00F H
IN AL, DX
On execution, at first DX register is loaded with the input port having address COOF H. The second instruction ensures that the port content is moved over to AL register.

## Problem-3

Interface an 8255 with 8086 to work as an I/O port. Initialize port A as output port, port B as input port and port C as output port. Port A address should be 0740 H . Write a program to sense switch positions $\mathrm{SW}_{0}-\mathrm{SW}_{7}$ connected at port B. The sensed pattern is to be displayed on port A, to which 8 LEDs are connected, while the port C lower displays number of on switches out of the total eight switches.

## Problem-3

## Control word Format

Control word $=82 \mathrm{H}$


## Problem-3



## Problem-3

$8086 A_{2} A_{1}$ pin connected to $A_{1}$ and $A_{0}$ pin of 8255 As per the question Port A address should be 0740 H
Thus
Port A Address $=\quad 0000011101000000=0740 \mathrm{H}$
Port B Address =
$0000011101000010=0742 \mathrm{H}$
Port C Address =
$0000011101000100=0744 \mathrm{H}$
CWR (control wort reg) Address $=0000011101000110=0746 \mathrm{H}$

## Problem-3

The ALP for the program is
MOV DX, 0746H
MOV AL, 82H
OUT DX, AL
SUB DX, 04H
IN AL, DX
SUB DX, 02H
OUT DX, AL
MOV BL, 00H
MOV CL, 08H
YY: ROLAL
JNC XX
INC BL
XX: DEC CL
JNZ YY
MOV AL, BL
ADD DX, 04H
OUT DX, AL

## Problem-4

## Write a program for getting a delay of 100 msecs.

## Problem-4

## Write a program for getting a delay of 100 msecs.

MOV CX,N
HERE ADD AX, 0
LOOP HERE

4
5
$17 / 5$

12 MHz
Total cycles of delay $=4+5 \mathrm{~N}+(17 \times(\mathrm{N}-1))+5=4+22 \mathrm{~N}-$ $12=22 \mathrm{~N}-8$
Total delay time $=100 \mathrm{msecs}=(22 \mathrm{~N}-8) \times 0.083$ usecs
For 100 msecs delay time, the value of

$$
\begin{aligned}
\mathrm{N} & =((100 \mathrm{msecs} / .083 \mathrm{usecs})+8) / 22 \\
& =54765 \\
& =\text { D5ED H }
\end{aligned}
$$

## Problem-5

Write a program to generate a square wave at the LSB of the data bus of an output port with address F 767 H .

## Problem-5

Write a program to generate a square wave at the LSB of the data bus of an output port with address F 767 H .

MOV DX,F767H
AGAIN: MOV AL,0FFH
OUT DX,AL
CALL DELAY_1MS
MOV AL, 00
OUT DX,AL
CALL DELAY_1MS
JMPAGAIN
Assume procedure DELAY_1MS having 1msecs delay
DELAY_1MS PROC NEAR
MOV CX,N
HERE: NOP
LOOP HERE
4/19/2021 DELAY_1MS ENDP

## Problem-6

In a pressure monitoring environment, 10 pressure sensors have been connected. The pressure from these sensors has to be read at intervals of 5 msecs. Write a program to read the sensor values from input ports having address 0 FF 0 H to $0 \mathrm{FF9H}$

## Problem-6

- MOV DX,OFFOH
- MOV CX,OAH
- ENTR:
- IN AL,DX
- MOV TEMP[SI],AL //TEMP is memory to store the pressure data
- INC SI
- INC DX
- CALL DELAY_FUNC
- LOOP ENTR
- EXIT
- DELAY_FUNC PROC NEAR
- MOV CX,0BC2H //4
- HERE: NOP //3 //approx 5 ms .
- LOOP HERE //17/5
- RET
- DELAY_FUNC ENDP


## Thank You

